Remarks on j-$j-$eigenfunctions of operators

被引:1
|
作者
Edmunds, David E. [1 ]
Lang, Jan [2 ]
机构
[1] Univ Sussex, Dept Math, Brighton, England
[2] Ohio State Univ, Dept Math Sci, 100 Math Tower,231 W 18th Ave, Columbus, OH 43210 USA
关键词
approximation numbers; compact operators; Gelfand numbers; generalization of Hilbert-Schmidt theorem; Hilbertian map; j-eigenfunctions; p-compactness; P-COMPACT OPERATORS; EIGENVALUES; SPACES;
D O I
10.1002/mana.202100417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is largely concerned with the possibility of obtaining a series representation for a compact linear map T acting between Banach spaces. It is known that, using the notions of j-$j-$eigenfunctions and j-$j-$ eigenvalues, such a representation is possible under certain conditions on T. Particular cases discussed include those in which T can be factorized through a Hilbert space, or has certain s-numbers that are fast-decaying. The notion of p-compactness proves to be useful in this context; we give examples of maps that possess this property.
引用
收藏
页码:1071 / 1086
页数:16
相关论文
共 49 条
  • [21] Analysis of Schrodinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case
    Hunsicker, Eugenie
    Li, Hengguang
    Nistor, Victor
    Uski, Ville
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (04) : 1130 - 1151
  • [22] The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self - Adjoin Operators Via Method of Regularized Traces
    Kadchenko, S. I.
    Kakushkin, S. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2012, (14): : 83 - 88
  • [23] Strong minimality and the j-function
    Freitag, James
    Scanlon, Thomas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (01) : 119 - 136
  • [24] Abstract limit J-spaces
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    Mastylo, Mieczyslaw
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 501 - 525
  • [25] A note on J -spaces and relatively connected subsets
    Mthethwa, Simo S.
    Taherifar, Ali
    QUAESTIONES MATHEMATICAE, 2023, 46 (11) : 2453 - 2464
  • [26] Proximate Dirac spin liquid in the honeycomb lattice J1-J3 XXZ model: Numerical study and application to cobaltates
    Bose, Anjishnu
    Routh, Manodip
    Voleti, Sreekar
    Saha, Sudip Kumar
    Kumar, Manoranjan
    Saha-Dasgupta, Tanusri
    Paramekanti, Arun
    PHYSICAL REVIEW B, 2023, 108 (17)
  • [27] ON J-FRAMES RELATED TO MAXIMAL DEFINITE SUBSPACES
    Kamuda, Alan
    Kuzhel, Sergii
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (01): : 106 - 121
  • [28] Remarks on the Cwikel-Lieb-Rozenblum and Lieb-Thirring Estimates for Schrodinger Operators on Riemannian Manifolds
    Ouhabaz, El Maati
    Poupaud, Cesar
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1449 - 1459
  • [29] Fixed point theorems for (φ, k, i, j)-mappings
    Peppo, Catherine
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 562 - 570
  • [30] J. L. Lions' problem on maximal regularity
    Arendt, Wolfgang
    Dier, Dominik
    Fackler, Stephan
    ARCHIV DER MATHEMATIK, 2017, 109 (01) : 59 - 72