Infrared and visible image fusion based on residual dense network and gradient loss

被引:18
|
作者
Li, Jiawei [1 ]
Liu, Jinyuan [2 ]
Zhou, Shihua [1 ]
Zhang, Qiang [1 ,3 ]
Kasabov, Nikola K. [4 ,5 ]
机构
[1] Dalian Univ, Sch Software Engn, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[4] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
[5] Ulster Univ, Intelligent Syst Res Ctr, Londonderry BT52 1SA, North Ireland
基金
中国国家自然科学基金;
关键词
Image fusion; Unsupervised learning; End-to-end model; Infrared image; Visible image; MULTI-FOCUS; TRANSFORM;
D O I
10.1016/j.infrared.2022.104486
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Deep learning has made great progress in the field of image fusion. Compared with traditional methods, the image fusion approach based on deep learning requires no cumbersome matrix operations. In this paper, an end-to-end model for the infrared and visible image fusion is proposed. This unsupervised learning network architecture do not employ fusion strategy. In the stage of feature extraction, residual dense blocks are used to generate a fusion image, which preserves the information of source images to the greatest extent. In the model of feature reconstruction, shallow feature maps, residual dense information, and deep feature maps are merged in order to build a fused result. Gradient loss that we proposed for the network can cooperate well with special weight blocks extracted from input images to more clearly express texture details in fused images. In the training phase, we select 20 source image pairs with obvious characteristics from the TNO dataset, and expand them by random tailoring to serve as the training dataset of the network. Subjective qualitative and objective quantitative results show that the proposed model has advantages over state-of-the-art methods in the tasks of infrared and visible image fusion. We also use the RoadScene dataset to do ablation experiments to verify the effectiveness of the proposed network for infrared and visible image fusion.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] GRDATFusion: A gradient residual dense and attention transformer infrared and visible image fusion network for smart city security systems in cloud and fog computing
    Zheng, Jian
    Jeon, Seunggil
    Yang, Xiaomin
    EXPERT SYSTEMS, 2025, 42 (02)
  • [22] IR-MSDNet: Infrared and Visible Image Fusion Based On Infrared Features and Multiscale Dense Network
    Raza, Asif
    Liu, Jingdong
    Liu, Yifan
    Liu, Jian
    Li, Zeng
    Chen, Xi
    Huo, Hong
    Fang, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3426 - 3437
  • [23] Infrared and visible image fusion via dual encoder based on dense connection
    Lu, Quan
    Zhang, Hongbin
    Yin, Linfei
    PATTERN RECOGNITION, 2025, 163
  • [24] Unsupervised Infrared Image and Visible Image Fusion Algorithm Based on Deep Learning
    Chen Guoyang
    Wu Xiaojun
    Xu Tianyang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [25] DTFusion: Infrared and Visible Image Fusion Based on Dense Residual PConv-ConvNeXt and Texture-Contrast Compensation
    Zhou, Xinzhi
    He, Min
    Zhou, Dongming
    Xu, Feifei
    Jeon, Seunggil
    SENSORS, 2024, 24 (01)
  • [26] DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion
    Wang, Hongfeng
    Wang, Jianzhong
    Xu, Haonan
    Sun, Yong
    Yu, Zibo
    SENSORS, 2022, 22 (14)
  • [27] Infrared and visible image fusion based on particle swarm optimization and dense block
    Zhang, Jing
    Tang, Bingjin
    Hu, Shuai
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [28] A joint convolution auto-encoder network for infrared and visible image fusion
    Zhang, Zhancheng
    Gao, Yuanhao
    Xiong, Mengyu
    Luo, Xiaoqing
    Wu, Xiao-Jun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29017 - 29035
  • [29] SDRSwin: A Residual Swin Transformer Network with Saliency Detection for Infrared and Visible Image Fusion
    Li, Shengshi
    Wang, Guanjun
    Zhang, Hui
    Zou, Yonghua
    REMOTE SENSING, 2023, 15 (18)
  • [30] Infrared and Visible Image Fusion Method Based on Convolutional Auto-Encoder and Residual Block
    Jiang Zetao
    He Yuting
    ACTA OPTICA SINICA, 2019, 39 (10)