Infrared and visible image fusion based on residual dense network and gradient loss

被引:23
作者
Li, Jiawei [1 ]
Liu, Jinyuan [2 ]
Zhou, Shihua [1 ]
Zhang, Qiang [1 ,3 ]
Kasabov, Nikola K. [4 ,5 ]
机构
[1] Dalian Univ, Sch Software Engn, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[4] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
[5] Ulster Univ, Intelligent Syst Res Ctr, Londonderry BT52 1SA, North Ireland
基金
中国国家自然科学基金;
关键词
Image fusion; Unsupervised learning; End-to-end model; Infrared image; Visible image; MULTI-FOCUS; TRANSFORM;
D O I
10.1016/j.infrared.2022.104486
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Deep learning has made great progress in the field of image fusion. Compared with traditional methods, the image fusion approach based on deep learning requires no cumbersome matrix operations. In this paper, an end-to-end model for the infrared and visible image fusion is proposed. This unsupervised learning network architecture do not employ fusion strategy. In the stage of feature extraction, residual dense blocks are used to generate a fusion image, which preserves the information of source images to the greatest extent. In the model of feature reconstruction, shallow feature maps, residual dense information, and deep feature maps are merged in order to build a fused result. Gradient loss that we proposed for the network can cooperate well with special weight blocks extracted from input images to more clearly express texture details in fused images. In the training phase, we select 20 source image pairs with obvious characteristics from the TNO dataset, and expand them by random tailoring to serve as the training dataset of the network. Subjective qualitative and objective quantitative results show that the proposed model has advantages over state-of-the-art methods in the tasks of infrared and visible image fusion. We also use the RoadScene dataset to do ablation experiments to verify the effectiveness of the proposed network for infrared and visible image fusion.
引用
收藏
页数:11
相关论文
共 58 条
[1]   A new image quality metric for image fusion: The sum of the correlations of differences [J].
Aslantas, V. ;
Bendes, E. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (12) :160-166
[2]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[3]   Infrared and visible image fusion based on relative total variation decomposition [J].
Chen, Jun ;
Li, Xuejiao ;
Wu, Kangle .
INFRARED PHYSICS & TECHNOLOGY, 2022, 123
[4]   Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition [J].
Cui, Guangmang ;
Feng, Huajun ;
Xu, Zhihai ;
Li, Qi ;
Chen, Yueting .
OPTICS COMMUNICATIONS, 2015, 341 :199-209
[5]   The nonsubsampled contourlet transform: Theory, design, and applications [J].
da Cunha, Arthur L. ;
Zhou, Jianping ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) :3089-3101
[6]  
Deshmukh M., 2010, Int. J. Image Process., V4, P484
[7]   Fusing Infrared and Visible Images of Different Resolutions via Total Variation Model [J].
Du, Qinglei ;
Xu, Han ;
Ma, Yong ;
Huang, Jun ;
Fan, Fan .
SENSORS, 2018, 18 (11)
[8]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]   Contrast-Enhanced Fusion of Multisensor Images Using Subband-Decomposed Multiscale Retinex [J].
Jang, Jae Ho ;
Bae, Yoonsung ;
Ra, Jong Beom .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) :3479-3490