共 50 条
Subconvexity in the inhomogeneous cubic Vinogradov system
被引:1
作者:
Wooley, Trevor D. D.
[1
,2
]
机构:
[1] Purdue Univ, Dept Math, W Lafayette, IN USA
[2] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
来源:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
|
2023年
/
107卷
/
02期
关键词:
EQUATIONS;
PAIRS;
D O I:
10.1112/jlms.12698
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
When h is an element of Z(3), denote by B(X; h) the number of integral solutions to the system(6) n-expressionry sumexpressiontion ( i=1) (x(i)(j) - y(i)(j)) = h(j) (1 <= j <= 3),with 1 <= x(i), y(i) <= X (1 <= i <= 6). When h(1) &NOTEQUexpressionL; 0 and appropriate local solubility conditions on h are met, we obtain an asymptotic formula for B(X; h), thereby establishing a subconvex local-global principle in the inhomogeneous cubic Vinogradov system. We obtain similar conclusions also when h(1) = 0, h(2) &NOTEQUexpressionL; 0 and X is sufficiently large in terms of h(2). Our arguments involve minor arc estimates going beyond square-root cancellation.
引用
收藏
页码:798 / 817
页数:20
相关论文
共 50 条