Subconvexity in the inhomogeneous cubic Vinogradov system

被引:1
|
作者
Wooley, Trevor D. D. [1 ,2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN USA
[2] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 107卷 / 02期
关键词
EQUATIONS; PAIRS;
D O I
10.1112/jlms.12698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When h is an element of Z(3), denote by B(X; h) the number of integral solutions to the system(6) n-expressionry sumexpressiontion ( i=1) (x(i)(j) - y(i)(j)) = h(j) (1 <= j <= 3),with 1 <= x(i), y(i) <= X (1 <= i <= 6). When h(1) &NOTEQUexpressionL; 0 and appropriate local solubility conditions on h are met, we obtain an asymptotic formula for B(X; h), thereby establishing a subconvex local-global principle in the inhomogeneous cubic Vinogradov system. We obtain similar conclusions also when h(1) = 0, h(2) &NOTEQUexpressionL; 0 and X is sufficiently large in terms of h(2). Our arguments involve minor arc estimates going beyond square-root cancellation.
引用
收藏
页码:798 / 817
页数:20
相关论文
共 50 条