Subconvexity in the inhomogeneous cubic Vinogradov system

被引:1
|
作者
Wooley, Trevor D. D. [1 ,2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN USA
[2] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 107卷 / 02期
关键词
EQUATIONS; PAIRS;
D O I
10.1112/jlms.12698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When h is an element of Z(3), denote by B(X; h) the number of integral solutions to the system(6) n-expressionry sumexpressiontion ( i=1) (x(i)(j) - y(i)(j)) = h(j) (1 <= j <= 3),with 1 <= x(i), y(i) <= X (1 <= i <= 6). When h(1) &NOTEQUexpressionL; 0 and appropriate local solubility conditions on h are met, we obtain an asymptotic formula for B(X; h), thereby establishing a subconvex local-global principle in the inhomogeneous cubic Vinogradov system. We obtain similar conclusions also when h(1) = 0, h(2) &NOTEQUexpressionL; 0 and X is sufficiently large in terms of h(2). Our arguments involve minor arc estimates going beyond square-root cancellation.
引用
收藏
页码:798 / 817
页数:20
相关论文
共 50 条
  • [21] Explicit Soliton and Periodic Solutions to Three-Wave System with Quadratic and Cubic Nonlinearities
    Lin Ji
    Zhao Li-Na
    Li Hua-Mei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) : 676 - 680
  • [22] Synchronous Steady State Solutions of a Symmetric Mixed Cubic-Superlinear Schrodinger System
    Chteoui, Riadh
    Aljohani, Abdulrahman E.
    Ben Mabrouk, Anouar
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 18
  • [23] Dynamical system of optical soliton parameters for anti-cubic and generalized anti-cubic nonlinearities with super-Gaussian and super-sech pulses
    Ayela, Amour Marc
    Edah, Gaston
    Biswas, Anjan
    Zhou, Qin
    Yildirim, Yakup
    Khan, Salam
    Alzahrani, Abdullah K.
    Belic, Milivoj R.
    OPTICA APPLICATA, 2022, 52 (01) : 117 - 128
  • [24] OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL VISCOSITY
    Burtea, Cosmin
    ANALYSIS & PDE, 2017, 10 (02): : 439 - 479
  • [25] Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity
    Huang, Jingchi
    Paicu, Marius
    Zhang, Ping
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (06): : 806 - 831
  • [26] GLOBAL STRONG SOLUTIONS TO THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM IN THE EXTERIOR OF A CYLINDER\ast
    Guo, Zhengguang
    Wang, Yun
    Xie, Chunjing
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6804 - 6821
  • [27] Inner-Resonance for a Coupled Oscillator Arising in a Cubic Nonlinear Packaging System with Critical Component
    Wang, Jun
    Duan, Fang
    Yang, Rui-Hua
    Li, Zheng-Biao
    Lu, Li-Xin
    Xiang, Hong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 692 - 695
  • [28] Global Axisymmetric Solutions of Three Dimensional Inhomogeneous Incompressible Navier-Stokes System with Nonzero Swirl
    Chen, Hui
    Fang, Daoyuan
    Zhang, Ting
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) : 817 - 843
  • [29] Global smooth axisymmetric solutions of 3-D inhomogeneous incompressible Navier-Stokes system
    Abidi, Hammadi
    Zhang, Ping
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3251 - 3276
  • [30] Striated Regularity of 2-D Inhomogeneous Incompressible Navier-Stokes System with Variable Viscosity
    Paicu, Marius
    Zhang, Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) : 385 - 439