Thermal integration of waste to energy plants with Post-combustion CO2 capture

被引:22
|
作者
Su, Dan [1 ]
Herraiz, Laura [1 ]
Lucquiaud, Mathieu [2 ]
Thomson, Camilla [1 ]
Chalmers, Hannah [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Edinburgh, Scotland
[2] Univ Sheffield, Dept Mech Engn, Sheffield, England
关键词
Waste to Energy; Post-combustionCO2; capture; Zero-residual emission; CHP; Advanced thermal integration; Ultra-highCO2; ABSORPTION; INDUSTRIAL; GAS;
D O I
10.1016/j.fuel.2022.126004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Waste-to-Energy (WtE) is becoming an important application sector for carbon capture utilization and storage (CCS) due to its role in urban waste management and its inherent potential of achieving negative emissions. This study is built upon a series of modelling activities, with three representative WtE plant steam cycle configurations selected to integrate monoethanolamine (MEA) based Post-combustion CO2 Capture (PCC). With 60% biogenic carbon in the fuel, a set of key performance indicators of the investigated WtE plant configurations are presented. Results show that there is significant potential for heat recovery from the PCC process to provide heat for District Heating (DH). With advanced heat recovery, the energy utility factor (EUF) of WtE plant could be higher than that for WtE plant without PCC. Results also show that optimised process design can be used to enable ultra-high CO2 capture (99.72% in this study) to be achieved with only a marginal increase in specific reboiler duty when compared with 95% capture. This study also highlights the importance of differentiating carbon intensities for different product bases: electrical or thermal or waste, which are important when comparing WtE CCS with other carbon saving technologies. The findings of this study provide valuable information for the future imple-mentation of carbon dioxide capture technology in the WtE sector.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [32] New solvent blends for post-combustion CO2 capture
    Hanna K.Knuutila
    Rune Rennemo
    Arlinda F.Ciftja
    GreenEnergy&Environment, 2019, 4 (04) : 439 - 452
  • [33] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [34] Optimisation of post-combustion CO2 capture for flexible operation
    Mac Dowell, N.
    Shah, N.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1525 - 1535
  • [35] Analysis and status of post-combustion CO2 capture technologies
    Bhown, Abhoyjit S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [36] Cascaded Membrane Processes for Post-Combustion CO2 Capture
    Zhao, Li
    Riensche, Ernst
    Weber, Michael
    Stolten, Detlef
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 489 - 496
  • [37] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [38] New solvent blends for post-combustion CO2 capture
    Knuutila, Hanna K.
    Rennemo, Rune
    Ciftja, Arlinda F.
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 439 - 452
  • [39] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [40] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772