Predicting sentiment and rating of tourist reviews using machine learning

被引:37
作者
Puh, Karlo [1 ]
Babac, Marina Bagic [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
关键词
Sentiment analysis; Machine learning; Deep learning; Customer reviews; Tourism;
D O I
10.1108/JHTI-02-2022-0078
中图分类号
F [经济];
学科分类号
02 ;
摘要
Purpose - As the tourism industry becomes more vital for the success of many economies around the world, the importance of technology in tourism grows daily. Alongside increasing tourism importance and popularity, the amount of significant data grows, too. On daily basis, millions of people write their opinions, suggestions and views about accommodation, services, and much more on various websites. Well-processed and filtered data can provide a lot of useful information that can be used for making tourists' experiences much better and help us decide when selecting a hotel or a restaurant. Thus, the purpose of this study is to explore machine and deep learning models for predicting sentiment and rating from tourist reviews. Design/methodology/approach - This paper used machine learning models such as Naive Bayes, support vector machines (SVM), convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM) for extracting sentiment and ratings from tourist reviews. These models were trained to classify reviews into positive, negative, or neutral sentiment, and into one to five grades or stars. Data used for training the models were gathered from TripAdvisor, the world's largest travel platform. The models based on multinomial Naive Bayes (MNB) and SVM were trained using the term frequency-inverse document frequency (TF-IDF) for word representations while deep learning models were trained using global vectors (GloVe) for word representation. The results from testing these models are presented, compared and discussed. Findings - The performance of machine and learning models achieved high accuracy in predicting positive, negative, or neutral sentiments and ratings from tourist reviews. The optimal model architecture for both classification tasks was a deep learning model based on BiLSTM. The study's results confirmed that deep learning models are more efficient and accurate than machine learning algorithms. Practical implications - The proposed models allow for forecasting the number of tourist arrivals and expenditure, gaining insights into the tourists' profiles, improving overall customer experience, and upgrading marketing strategies. Different service sectors can use the implemented models to get insights into customer satisfaction with the products and services as well as to predict the opinions given a particular context. Originality/value - This study developed and compared different machine learning models for classifying customer reviews as positive, negative, or neutral, as well as predicting ratings with one to five stars based on a TripAdvisor hotel reviews dataset that contains 20,491 unique hotel reviews.
引用
收藏
页码:1188 / 1204
页数:17
相关论文
共 50 条
  • [1] Sentiment classification on product reviews using machine learning and deep learning techniques
    Singh, Neha
    Jaiswal, Umesh Chandra
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (12) : 5726 - 5741
  • [2] Sentiment Analysis of Customer Product Reviews Using Machine Learning
    Singla, Zeenia
    Randhawa, Sukhchandan
    Jain, Sushma
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
  • [3] Comparing Machine Learning Models for Sentiment Analysis and Rating Prediction of Vegan and Vegetarian Restaurant Reviews
    Hanic, Sanja
    Babac, Marina Bagic
    Gledec, Gordan
    Horvat, Marko
    COMPUTERS, 2024, 13 (10)
  • [4] Analysis of sentiment based movie reviews using machine learning techniques
    Chirgaiya, Sachin
    Sukheja, Deepak
    Shrivastava, Niranjan
    Rawat, Romil
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (05) : 5449 - 5456
  • [5] Sentiment analysis of emoji fused reviews using machine learning and Bert
    Khan, Amit
    Majumdar, Dipankar
    Mondal, Bikromadittya
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Classification of Sentiment Reviews for Indian Railways Using Machine Learning Methods
    Bagga, Manju
    Aggarwa, Ritu
    Arora, Nitika
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 171 - 177
  • [7] Sentiment analysis on product reviews on twitter using Machine Learning Approaches
    Jayakody, J. P. U. S. D.
    Kumara, B. T. G. S.
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [8] A novel method for sentiment classification of drug reviews using fusion of deep and machine learning techniques
    Basiri, Mohammad Ehsan
    Abdar, Moloud
    Cifci, Mehmet Akif
    Nemati, Shahla
    Acharya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [9] Sentiment Analysis in Customer Reviews for Product Recommendation in E-commerce Using Machine Learning
    Panduro-Ramirez, Jeidy
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [10] Sentiment Classification based on Machine Learning Approaches in Amazon Product Reviews
    Abu Kausar, Mohammad
    Fageeri, Sallam Osman
    Soosaimanickam, Arockiasamy
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (03) : 10849 - 10855