A Surrogate-Assisted Differential Evolution with fitness-independent parameter adaptation for high-dimensional expensive optimization

被引:13
|
作者
Yu, Laiqi [1 ]
Ren, Chongle [1 ]
Meng, Zhenyu [1 ]
机构
[1] Fujian Univ Technol, Inst Artificial Intelligence, Fuzhou, Peoples R China
关键词
Differential Evolution; High-dimensional expensive optimization; Parameter adaptation; Surrogate model; PARTICLE SWARM; ALGORITHM; MODEL;
D O I
10.1016/j.ins.2024.120246
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surrogate -assisted evolutionary algorithms (SAEAs) have gained considerable attention owing to their ability of tackling expensive optimization problems (EOPs). The surrogate model can be used to replace real fitness value with approximated one, thus greatly reducing computational cost in expensive function evaluations. However, most existing SAEAs are designed for expensive optimization with low or medium dimensions owing to the curse of dimensionality. To improve the performance for solving high -dimensional expensive optimization problems (HEOPs), surrogate -assisted Differential Evolution with fitness -independent parameter adaptation (SADEFI) is proposed in the paper. The SADE-FI algorithm consists of a global surrogate -assisted prescreening strategy (GSA -PS) and a local surrogate -assisted DE with fitness -independent parameter adaptation (LSA-FIDE). The main highlights of the paper can be summarized as follows: First, both global and local surrogates are employed to approximate the fitness value of candidate offspring in GSA -PS and LSA-FIDE, respectively. Second, a fitness -independent parameter adaptation mechanism is firstly incorporated into the framework of surrogate -assisted DE as an efficient parameter adaptation for surrogate -assisted search. Third, both the kernel space determination mechanism and linear population size reduction strategy are implemented to enhance the exploitation capability of LSA-FIDE. To validate the performance of SADE-FI, it was tested on expensive benchmark functions on 30D, 50D, 100D, and 200D, as well as real -world antenna array design problem. The optimization results were compared with state-ofthe-art algorithms, and the results indicate that SADE-FI has a significant performance advantage in solving HEOPs.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Jiang, Chen
    Zhang, Jinhao
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (02) : 327 - 359
  • [32] A surrogate-assisted differential evolution for expensive constrained optimization problems involving mixed-integer variables
    Liu, Yuanhao
    Yang, Zan
    Xu, Danyang
    Qiu, Haobo
    Gao, Liang
    INFORMATION SCIENCES, 2023, 622 : 282 - 302
  • [33] Surrogate-Assisted Differential Evolution for Wave Energy Converters Optimization
    Zhang, Zihang
    Zhang, Zhiming
    Lei, Zhenyu
    Xiong, Runqun
    Cheng, Jiujun
    Gao, Shangce
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [34] A Surrogate-assisted Differential Evolution Algorithm with Dynamic Parameters Selection for Solving Expensive Optimization Problems
    Elsayed, Saber M.
    Ray, T.
    Sarker, Ruhul A.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1062 - 1068
  • [35] An Efficient Two-Stage Surrogate-Assisted Differential Evolution for Expensive Inequality Constrained Optimization
    Wei, Feng-Feng
    Chen, Wei-Neng
    Mao, Wentao
    Hu, Xiao-Min
    Zhang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (12): : 7769 - 7782
  • [36] Surrogate-Assisted Differential Evolution With Adaptive Multisubspace Search for Large-Scale Expensive Optimization
    Gu, Haoran
    Wang, Handing
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1765 - 1779
  • [37] A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems
    Chen, Guodong
    Zhang, Kai
    Xue, Xiaoming
    Zhang, Liming
    Yao, Chuanjin
    Wang, Jian
    Yao, Jun
    APPLIED SOFT COMPUTING, 2022, 116
  • [38] Optimization of Emergency Load-Shedding Based on Surrogate-Assisted Differential Evolution
    Gai, Chenhao
    Chang, Yanzhao
    Xu, Taoyang
    Li, Changgang
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 868 - 873
  • [39] Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems
    Zan Yang
    Haobo Qiu
    Liang Gao
    Chen Jiang
    Jinhao Zhang
    Journal of Global Optimization, 2019, 74 : 327 - 359
  • [40] A two-stage surrogate-assisted meta-heuristic algorithm for high-dimensional expensive problems
    Liang Zheng
    Jinyue Shi
    Youpeng Yang
    Soft Computing, 2023, 27 : 6465 - 6486