Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review

被引:31
|
作者
Osman, Ahmed I. [1 ]
Fang, Bingbing [2 ]
Zhang, Yubing [2 ]
Liu, Yunfei [2 ]
Yu, Jiacheng [2 ]
Farghali, Mohamed [3 ,4 ]
Rashwan, Ahmed K. [5 ]
Chen, Zhonghao [2 ]
Chen, Lin [6 ,7 ]
Ihara, Ikko [3 ]
Rooney, David W. [1 ]
Yap, Pow-Seng [2 ]
机构
[1] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, North Ireland
[2] Xian Jiaotong Liverpool Univ, Dept Civil Engn, Suzhou 215123, Peoples R China
[3] Kobe Univ, Dept Agr Engn & Socioecon, Kobe 6578501, Japan
[4] Assiut Univ, Fac Vet Med, Dept Anim Poultry Hyg & Environm Sanitat, Assiut 71526, Egypt
[5] South Valley Univ, Fac Agr, Dept Food & Dairy Sci, Qena 83523, Egypt
[6] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[7] Chongqing Univ, Key Lab New Technol Construct Cities Mt Area, Minist Educ, Chongqing 400045, Peoples R China
关键词
Life cycle assessment; Techno-economic analysis; Sustainable bioenergy production; Bioenergy chemical aspect; Policy implication; WASTE-TO-ENERGY; BIODIESEL PRODUCTION; LIGNOCELLULOSIC BIOMASS; BIOGAS PRODUCTION; WATER FOOTPRINT; BIOETHANOL PRODUCTION; ETHANOL-PRODUCTION; WHEAT-STRAW; ANAEROBIC-DIGESTION; HYDROGEN-PRODUCTION;
D O I
10.1007/s10311-023-01694-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The global expansion of the bioenergy industry raises concerns, emphasizing the need for careful evaluation and sustainable management. To facilitate this, life cycle assessments beyond greenhouse gas emissions and energy balance are essential, along with the standardization of assessment methodologies to enable meaningful comparisons. Here, we review life cycle assessment, chemical aspects, and policy implication of bioenergy production. We discuss life cycle assessment in terms of concepts, methods, impacts, greenhouse gases, land use, water consumption, bioethanol, biodiesel, biogas, and techno-economic analysis. Chemical aspects comprise reaction processes and means to improve efficiency. Concerning policies, tools, and frameworks that encourage sustainable energy production are presented. We found that carbon dioxide removal ranges from 45 to 99% in various bioenergy processes. The review also emphasizes the importance of chemistry in advancing sustainable bioenergy production for a more sustainable and secure energy future.
引用
收藏
页码:1115 / 1154
页数:40
相关论文
共 50 条
  • [31] Blue and green ammonia production: A techno-economic and life cycle assessment perspective
    Mayer, Patricia
    Ramirez, Adrian
    Pezzella, Giuseppe
    Winter, Benedikt
    Sarathy, S. Mani
    Gascon, Jorge
    Bardow, Andre
    ISCIENCE, 2023, 26 (08)
  • [32] Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies
    Davidson, Matthew G.
    Elgie, Shaun
    Parsons, Sophie
    Young, Tim J.
    GREEN CHEMISTRY, 2021, 23 (09) : 3154 - 3171
  • [33] Alternative sustainable routes to methanol production: Techno-economic and environmental assessment
    Scomazzon, Marco
    Barbera, Elena
    Bezzo, Fabrizio
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):
  • [34] Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment
    Goncalves, Ana L.
    Alvim-Ferraz, Maria C. M.
    Martins, Fernando G.
    Simoes, Manuel
    Pires, Jose C. M.
    ENERGIES, 2016, 9 (04)
  • [35] A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment
    Kaniapan, Sivabalan
    Pasupuleti, Jagadeesh
    Nesan, Kartikeyan Patma
    Abubackar, Haris Nalakath
    Umar, Hadiza Aminu
    Oladosu, Temidayo Lekan
    Bello, Segun R.
    Rene, Eldon R.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (06)
  • [36] Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa
    Aui, Alvina
    Li, Wenqin
    Wright, Mark M.
    WASTE MANAGEMENT, 2019, 89 : 154 - 164
  • [37] Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge
    Medina-Martos, Enrique
    Istrate, Ioan-Robert
    Villamil, John A.
    Galvez-Martos, Jose-Luis
    Dufour, Javier
    Mohedano, Angel F.
    JOURNAL OF CLEANER PRODUCTION, 2020, 277
  • [38] Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: A life cycle assessment and techno-economic analysis
    Mohamed, Badr A.
    O'Boyle, Marnie
    Li, Loretta Y.
    APPLIED ENERGY, 2023, 346
  • [39] Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes
    Salkuyeh, Yaser Khojasteh
    Saville, Bradley A.
    MacLean, Heather L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (20) : 9514 - 9528
  • [40] Life-cycle assessment and techno-economic analysis of the production of wood vinegar from Eucommia stem:a case study
    JiLu Zheng
    YaHong Zhu
    YanYan Dong
    MingQiang Zhu
    Frontiers of Chemical Science and Engineering, 2023, 17 (08) : 1109 - 1121