Evaluation of heterogeneous metal-sulfide molten salt slurry systems for hydrogen production through methane pyrolysis

被引:8
作者
Mcconnachie, Mark [1 ,2 ]
Sheil, Alister [1 ]
Konarova, Muxina [1 ]
Dow, Simon Smart [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, Dow Ctr Sustainable Engn Innovat, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Chem Engn, St Lucia Brisbane, Qld 4072, Australia
关键词
salt slurry bubble column reactors; Methane pyrolysis; Molten salt; Hydrogen production; CATALYTIC DECOMPOSITION; CONVERSION; SULFUR;
D O I
10.1016/j.ijhydene.2023.08.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we evaluate the addition of suspended metal sulfides to molten salt slurry systems for methane pyrolysis. Stability tests are completed at 800 degrees C in eutectic molten sodium and potassium bromide for 6 h. In addition, the slurries are evaluated from 800 to 900 degrees C. It is demonstrated that the addition of metal sulfides does enhance hydrogen production over a 6-h stability test. MoS2 2-mm particles suspended in NaBr-KBr demonstrated 2.75% methane conversion at 800 degrees C with a 120 mm bubble path, with an apparent activation energy of 57 kJ mol-1. In addition, the MoS2 particles demonstrated good structural stability but deactivated primarily through coking in the melt. The experiments demonstrate the potential to reduce the operating temperature of molten salt methane pyrolysis, although there is notable instability. MoS2 in one run was observed to steadily decline from a peak of 2.84% methane conversion to 1.71% in 6 h. This instability is the result of coking; leaching is also observed in WS2 samples. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:981 / 991
页数:11
相关论文
共 39 条
[1]   Experimental analysis of direct thermal methane cracking [J].
Abanades, A. ;
Ruiz, E. ;
Ferruelo, E. M. ;
Hernandez, F. ;
Cabanillas, A. ;
Martinez-Val, J. M. ;
Rubio, J. A. ;
Lopez, C. ;
Gavela, R. ;
Barrera, G. ;
Rubbia, C. ;
Salmieri, D. ;
Rodilla, E. ;
Gutierrez, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) :12877-12886
[2]   Hydrogen production by methane decomposition: A review [J].
Abbas, Hazzim F. ;
Daud, W. M. A. Wan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1160-1190
[3]  
[Anonymous], 2020, GLOBAL EV OUTLOOK 20, DOI [10.1787/a60abbf2-en, DOI 10.1787/A60ABBF2-EN]
[4]  
[Anonymous], 2021, NET ZERO 2050 ROADMA
[5]   Oxidative dehydrogenation of propane over transition metal sulfides using sulfur as an alternative oxidant [J].
Arinaga, Allison M. ;
Liu, Shanfu ;
Marks, Tobin J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (20) :6840-6848
[6]   NMR STUDY OF DEHYDRATION OF SODIUM BROMIDE DIHYDRATE [J].
CAMPBELL, ID ;
MACKEY, DJ .
AUSTRALIAN JOURNAL OF CHEMISTRY, 1971, 24 (01) :45-&
[7]   Catalytic decomposition of methane to produce hydrogen: A review [J].
Fan, Zeyu ;
Weng, Wei ;
Zhou, Jing ;
Gu, Dong ;
Xiao, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 58 :415-430
[8]  
Gaskey B, 2017, Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts
[9]   Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed [J].
Geissler, T. ;
Abanades, A. ;
Heinzel, A. ;
Mehravaran, K. ;
Mueller, G. ;
Rathnam, R. K. ;
Rubbia, C. ;
Salmieri, D. ;
Stoppel, L. ;
Stueckrad, S. ;
Weisenburger, A. ;
Wenninger, H. ;
Wetzel, Th. .
CHEMICAL ENGINEERING JOURNAL, 2016, 299 :192-200
[10]   Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support [J].
Hoang, D. L. ;
Chan, S. H. ;
Ding, O. L. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1248-1257