Dynamic analysis of piezolaminated shell structures reinforced with agglomerated carbon nanotubes using an enhanced solid-shell element

被引:1
|
作者
Mellouli, H. [2 ]
Mallek, H. [2 ]
Louhichi, R. [2 ]
Wali, M. [2 ]
Dammak, F. [2 ]
Alharbi, S. [1 ]
机构
[1] Univ Hail, Coll Engn, Dept Mech Engn, Hail City 81451, Saudi Arabia
[2] Univ Sfax, Natl Engn Sch Sfax, Lab Electrochem & Environm LEE, ENIS, Sfax, Tunisia
关键词
Enhanced solid shell; Piezoelectric; Dynamic; EAS; Agglomerated CNTs; FREE-VIBRATION ANALYSIS; THERMAL-CONDUCTIVITY; NONLINEAR-ANALYSIS; PLATES; FORMULATION;
D O I
10.1007/s00366-023-01923-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work introduces a linear dynamic analysis of composite smart solid-shell structures reinforced with agglomerated Carbone Nanotubes and embedded at external faces with piezolayers. The coupled electro-mechanical governing equation of solid-shell structures under dynamic loads is obtained by the estimation of the displacement field with the First-Order Shear Deformation Theory (FSDT). In this proposed model, the shear and thickness locking were solved by the use of the Assumed Natural Strain (ANS) method as well as the Enhanced Assumed Strain (EAS) method is adopted for enhancing of the membrane and transversal strains. Each element of the structure is modeled by an eight-node hexahedron with four degrees of freedom: three displacements and an electrical potential. The middle part of the structure is made of a composite reinforced with agglomerated Carbone Nanotubes (CNTs) along the thickness. Different agglomeration schemes are investigated by means of a two-parameter agglomeration model. The external faces of the shell structure are made with piezoelectric material which accentuates the smart aspect of such structures. The mechanical properties of such a reinforced composite are evaluated using Mori-Tanaka (EMT)'s technique. An enhanced finite-element solid-shell model is implemented to investigate the effects of nanotubes agglomeration on the transient response of solid shells, such as the impact of various configurations of agglomerations, the volume fraction of CNTs, and some geometrical parameters of solid-shell structures. From deduced numerical results, it is exposed that the reinforcing fibers with different agglomeration schemes retain a significant impact on the dynamic performances of the solid-shell structure.
引用
收藏
页码:2363 / 2383
页数:21
相关论文
共 50 条
  • [21] A solid-shell Cosserat point element for the analysis of geometrically linear and nonlinear laminated composite structures
    Jabareen, Mahmood
    Mtanes, Eli
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 142 : 61 - 80
  • [22] A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
    Yao LinQuan
    Sze, K. Y.
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (03): : 575 - 583
  • [23] A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
    LinQuan Yao
    K. Y. Sze
    Science in China Series E: Technological Sciences, 2009, 52 : 575 - 583
  • [24] On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations
    de Sousa, R. J. Alves
    Yoon, J. W.
    Cardoso, R. P. R.
    Valente, R. A. Fontes
    Gracio, J. J.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2007, 23 (03) : 490 - 515
  • [25] A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
    SZE K Y
    中国科学:技术科学, 2010, 40 (03) : 322 - 322
  • [26] A SOLID-SHELL TRANSITION ELEMENT FOR GEOMETRICALLY NON-LINEAR ANALYSIS OF LAMINATED COMPOSITE STRUCTURES
    LIAO, CL
    REDDY, JN
    ENGELSTAD, SP
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (08) : 1843 - 1854
  • [27] A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
    SZE K Y
    Science in China(Series E:Technological Sciences), 2009, (03) : 575 - 583
  • [28] FGM Shell Structures Analysis Using an Enhanced Discrete Double Directors Shell Element
    Wali, Mondher
    Hajlaoui, Abdessalem
    Mars, Jamel
    El Bikri, K.
    Jarraya, Abdessalem
    Dammak, Fakhreddine
    MECHATRONIC SYSTEMS: THEORY AND APPLICATIONS, 2014, : 131 - 147
  • [29] A partial hybrid stress solid-shell element for the analysis of laminated composites
    Rah, K.
    Van Paepegem, W.
    Habraken, A. M.
    Degrieck, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (49-52) : 3526 - 3539
  • [30] Failure analysis of reinforced concrete shell structures using layered shell element with pressure node
    Song, HW
    Shim, SH
    Byun, KJ
    Maekawa, K
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2002, 128 (05): : 655 - 664