Compressive sensing-based correlation plenoptic imaging

被引:6
|
作者
Petrelli, Isabella [1 ]
Santoro, Francesca [1 ]
Massaro, Gianlorenzo [2 ,3 ]
Scattarella, Francesco [2 ,3 ]
Pepe, Francesco V. [2 ,3 ]
Mazzia, Francesca [4 ]
Ieronymaki, Maria [5 ]
Filios, George [5 ]
Mylonas, Dimitris [5 ]
Pappas, Nikos [5 ]
Abbattista, Cristoforo [1 ]
D'Angelo, Milena [2 ,3 ]
机构
[1] Planetek Italia srl, Bari, Italy
[2] Univ Bari, Dipartimento Interuniv Fis, I-70126 Bari, Italy
[3] Ist Nazl Fis Nucleare Sez Bari, Bari, Italy
[4] Univ Bari, Dipartimento Informat, Bari, Italy
[5] Planetek Hellas EPE, Athens 15125, Greece
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
light-field imaging; Plenoptic Imaging; 3D imaging; correlation imaging; compressive sensing; RECONSTRUCTION;
D O I
10.3389/fphy.2023.1287740
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Correlation Plenoptic Imaging (CPI) is an innovative approach to plenoptic imaging that tackles the inherent trade-off between image resolution and depth of field. By exploiting the intensity correlations that characterize specific states of light, it extracts information of the captured light direction, enabling the reconstruction of images with increased depth of field while preserving resolution. We describe a novel reconstruction algorithm, relying on compressive sensing (CS) techniques based on the discrete cosine transform and on gradients, used in order to reconstruct CPI images with a reduced number of frames. We validate the algorithm using simulated data and demonstrate that CS-based reconstruction techniques can achieve high-quality images with smaller acquisition times, thus facilitating the practical application of CPI.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Plenoptic imaging through correlation
    Di Lena, F.
    Pepe, F., V
    Mazzilli, A.
    Garuccio, A.
    Scarcell, G.
    D'Angelo, M.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2018, 41 (03):
  • [42] Antenna Placement in a Compressive Sensing-Based Colocated MIMO Radar
    Ajorloo, Abdollah
    Amini, Arash
    Tohidi, Ehsan
    Bastani, Mohammad Hassan
    Leus, Geert
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (06) : 4606 - 4614
  • [43] Improved Bayesian compressive sensing-based direction of arrival estimation
    Zhou, Mingyang
    Guo, Lianghao
    Yan, Chao
    Shengxue Xuebao/Acta Acustica, 2019, 44 (06): : 961 - 969
  • [44] Compressive Sensing-Based Channel Estimation for MIMO OTFS Systems
    Mohebbi, Ali
    Zhu, Wei-Ping
    Ahmad, M. Omair
    2023 BIENNIAL SYMPOSIUM ON COMMUNICATIONS, BSC, 2023, : 71 - 76
  • [45] Compressive Sensing-Based Sound Source Localization for Microphone Arrays
    Qin, Mengmeng
    Hu, De
    Chen, Zhe
    Yin, Fuliang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (09) : 4696 - 4719
  • [46] Compressive Sensing-based DOA Estimation using the Dantzig Selector
    Salama, Amgad A.
    Ahmad, M. Omair
    Swamy, M. N. S.
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 859 - 862
  • [47] A compressive sensing-based approach for Preisach hysteresis model identification
    Zhang, Jun
    Torres, David
    Sepulveda, Nelson
    Tan, Xiaobo
    SMART MATERIALS AND STRUCTURES, 2016, 25 (07)
  • [48] Compressive Sensing-Based Sound Source Localization for Microphone Arrays
    Mengmeng Qin
    De Hu
    Zhe Chen
    Fuliang Yin
    Circuits, Systems, and Signal Processing, 2021, 40 : 4696 - 4719
  • [49] Compressive sensing-based differential channel feedback for massive MIMO
    Shen, Wenqian
    Dai, Linglong
    Shi, Yi
    Zhu, Xudong
    Wang, Zhaocheng
    ELECTRONICS LETTERS, 2015, 51 (22) : 1824 - 1825
  • [50] Compressive Sensing-Based Interior Tomography: Preliminary Clinical Application
    Yu, Hengyong
    Wang, Ge
    Hsieh, Jiang
    Entrikin, Daniel W.
    Ellis, Sandra
    Liu, Baodong
    Carr, John Jeffrey
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2011, 35 (06) : 762 - 764