Compressive sensing-based correlation plenoptic imaging

被引:6
|
作者
Petrelli, Isabella [1 ]
Santoro, Francesca [1 ]
Massaro, Gianlorenzo [2 ,3 ]
Scattarella, Francesco [2 ,3 ]
Pepe, Francesco V. [2 ,3 ]
Mazzia, Francesca [4 ]
Ieronymaki, Maria [5 ]
Filios, George [5 ]
Mylonas, Dimitris [5 ]
Pappas, Nikos [5 ]
Abbattista, Cristoforo [1 ]
D'Angelo, Milena [2 ,3 ]
机构
[1] Planetek Italia srl, Bari, Italy
[2] Univ Bari, Dipartimento Interuniv Fis, I-70126 Bari, Italy
[3] Ist Nazl Fis Nucleare Sez Bari, Bari, Italy
[4] Univ Bari, Dipartimento Informat, Bari, Italy
[5] Planetek Hellas EPE, Athens 15125, Greece
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
light-field imaging; Plenoptic Imaging; 3D imaging; correlation imaging; compressive sensing; RECONSTRUCTION;
D O I
10.3389/fphy.2023.1287740
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Correlation Plenoptic Imaging (CPI) is an innovative approach to plenoptic imaging that tackles the inherent trade-off between image resolution and depth of field. By exploiting the intensity correlations that characterize specific states of light, it extracts information of the captured light direction, enabling the reconstruction of images with increased depth of field while preserving resolution. We describe a novel reconstruction algorithm, relying on compressive sensing (CS) techniques based on the discrete cosine transform and on gradients, used in order to reconstruct CPI images with a reduced number of frames. We validate the algorithm using simulated data and demonstrate that CS-based reconstruction techniques can achieve high-quality images with smaller acquisition times, thus facilitating the practical application of CPI.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A compressive sensing-based reconstruction approach to network traffic
    Nie, Laisen
    Jiang, Dingde
    Xu, Zhengzheng
    COMPUTERS & ELECTRICAL ENGINEERING, 2013, 39 (05) : 1422 - 1432
  • [32] Compressive Sensing-Based Detection With Multimodal Dependent Data
    Wimalajeewa, Thakshila
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) : 627 - 640
  • [33] Compressive Sensing-Based Metrology for Micropositioning Stages Characterization
    Tan, Ning
    Clevy, Cedric
    Laurent, Guillaume J.
    Chaillet, Nicolas
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) : 638 - 645
  • [34] A Compressed Sensing-Based Imaging System
    Alvarez-Lopez, Yuri
    Rodriguez-Vaqueiro, Yolanda
    Gonzalez-Valdes, Borja
    Martinez-Lorenzo, Jose Angel
    Las-Heras, Fernando
    Rappaport, Carey M.
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 3596 - U1763
  • [35] Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas [Compressive sensing-based TomoSAR inversion]
    Zhu, Xiao Xiang
    Bamler, Richard
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (04) : 51 - 58
  • [36] Compressive Sensing-Based Computed Tomography Imaging: An effective approach for COVID-19 Detection
    Upadhyaya, Vivek
    Salim, Mohammad
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (05)
  • [37] Nondestructive testing of GFRP composites with compressive sensing-based terahertz single-pixel imaging
    Latha, A. Mercy
    Kabilan, K.
    Esampelly, Swapna
    Bertleja, S.
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [38] Compressive sensing-based Stolt migration imaging algorithm for impulse through-the-wall radar
    Qu, Lele
    Li, Zhen
    Fathy, Aly E.
    ELECTRONICS LETTERS, 2020, 56 (20) : 1074 - 1076
  • [39] An Efficient Compressive Sensing-Based Method for Microwave Inverse Imaging Using Sparse Induced Current
    Zhou, Tianyi
    Su, Menghao
    Dong, Xu
    Peng, Tian
    Li, Huan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 8
  • [40] Correlation Plenoptic Imaging: An Overview
    Di Lena, Francesco
    Pepe, Francesco V.
    Garuccio, Augusto
    D'Angelo, Milena
    APPLIED SCIENCES-BASEL, 2018, 8 (10):