Learning Meta-Learning (LML) dataset: Survey data of meta-learning parameters

被引:0
|
作者
Corraya, Sonia [1 ]
Al Mamun, Shamim [1 ]
Kaiser, M. Shamim [1 ]
机构
[1] Jahangirnagar Univ, Inst Informat Technol, Savar, Bangladesh
来源
DATA IN BRIEF | 2023年 / 51卷
关键词
Multiple Intelligence; Learners' biosocial parameter; Chronotype; Imposter phenomenon; Illusion of competence;
D O I
10.1016/j.dib.2023.109777
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The 'Learning Meta-Learning' dataset presented in this paper contains both categorical and continuous data of adult learners for 7 meta-learning parameters: age, gender, degree of illusion of competence, sleep duration, chronotype, experience of the imposter phenomenon, and multiple intelligences. Convenience sampling and Simple Random Sampling methods are used to structure the anonymous online survey data collection voluntarily for LML dataset creation. The responses from the 54 survey questionnaires contain raw data from 1021 current students from 11 universities in Bangladesh. The entire dataset is stored in an excel file and the entire questionnaire is accessible at (10.5281/zenodo.8112213)In this article mean and standard deviation for the participant's baseline attributes are given for scale parameters, and frequency and percentage are calculated for categorical parameters. Academic curriculum, courses as well as professional training materials can be reviewed and redesigned with a focus on the diversity of learners. How the designed courses will be learned by learners along with how they will be taught is a significant point for education in any discipline. As the survey questionnaires are set for adult learners and only current university students have participated in this survey, this dataset is appropriate for study andragogy and heutagogy but not pedagogy.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Meta-learning approaches for learning-to-learn in deep learning: A survey
    Tian, Yingjie
    Zhao, Xiaoxi
    Huang, Wei
    Neurocomputing, 2022, 494 : 203 - 223
  • [22] Learning Tensor Representations for Meta-Learning
    Deng, Samuel
    Guo, Yilin
    Hsu, Daniel
    Mandal, Debmalya
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [23] Meta-learning for fast incremental learning
    Oohira, T
    Yamauchi, K
    Omori, T
    ARTIFICAIL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 157 - 164
  • [24] Learning to Propagate for Graph Meta-Learning
    Liu, Lu
    Zhou, Tianyi
    Long, Guodong
    Jiang, Jing
    Zhang, Chengqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [25] Subspace Learning for Effective Meta-Learning
    Jiang, Weisen
    Kwok, James T.
    Zhang, Yu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022, : 10177 - 10194
  • [26] Meta-learning approaches for learning-to-learn in deep learning: A survey
    Tian, Yingjie
    Zhao, Xiaoxi
    Huang, Wei
    NEUROCOMPUTING, 2022, 494 : 203 - 223
  • [27] Meta-Learning Representations for Continual Learning
    Javed, Khurram
    White, Martha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [28] TOOLS AND TASKS FOR LEARNING AND META-LEARNING
    Jaworski, Barbara
    JOURNAL OF MATHEMATICS TEACHER EDUCATION, 2005, 8 (05) : 359 - 361
  • [29] Tools and Tasks for Learning and Meta-learning
    Barbara Jaworski
    Journal of Mathematics Teacher Education, 2005, 8 (5) : 359 - 361
  • [30] On meta-learning rule learning heuristics
    Janssen, Frederik
    Fuernkranz, Johannes
    ICDM 2007: PROCEEDINGS OF THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 529 - 534