Early diagnosis of citrus Huanglongbing by Raman spectroscopy and machine learning

被引:2
|
作者
Kong, Lili [1 ,3 ]
Liu, Tianyuan [1 ]
Qiu, Honglin [1 ]
Yu, Xinna [1 ]
Wang, Xianda [2 ]
Huang, Zhiwei [4 ]
Huang, Meizhen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Fujian Acad Agr Sci, Fruit Res Inst, Fuzhou 350013, Peoples R China
[3] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[4] Natl Univ Singapore, Coll Design & Engn, Singapore 117576, Singapore
基金
中国国家自然科学基金;
关键词
Raman spectroscopy; Huanglongbing; detection strategy; machine learning; early diagnosis;
D O I
10.1088/1612-202X/ad1097
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Timely diagnosis of citrus Huanglongbing (HLB) is fundamental to suppressing disease spread and reducing economic losses. This paper explores the combination of Raman spectroscopy and machine learning for on-site, accurate and early diagnosis of citrus HLB. The tissue lesion characteristics of citrus leaves at different stages of HLB infection was explored by Raman spectroscopy, and a scientific spectral acquisition strategy was proposed. Combined with machine learning for feature extraction, modeling learning, and predictive analysis, the diagnostic accuracies of principal component analysis (PCA)-Partial least-square and PCA-support vector machine models for the prediction set were 94.07% and 95.56%, respectively. Compared with conventional random detection method, the detection strategy proposed in this paper shows higher accuracy, especially in early HLB diagnosis with significant advantages.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Raman Spectroscopy an Option for the Early Detection of Citrus Huanglongbing
    Vallejo Perez, Moises Roberto
    Galindo Mendoza, Maria Guadalupe
    Ramirez Elias, Miguel Ghebre
    Javier Gonzalez, Francisco
    Navarro Contreras, Hugo Ricardo
    Contreras Servin, Carlos
    APPLIED SPECTROSCOPY, 2016, 70 (05) : 829 - 839
  • [2] Laser-induced fluorescence spectroscopy applied to early diagnosis of citrus Huanglongbing
    Ranulfi, Anielle C.
    Cardinali, Marcelo C. B.
    Kubota, Thiago M. K.
    Freitas-Astua, Juliana
    Ferreira, Ednaldo J.
    Bellete, Barbara S.
    da Silva, Maria Fatima G. F.
    Villas Boas, Paulino R.
    Magalhaes, Aida B.
    Milori, Debora M. B. P.
    BIOSYSTEMS ENGINEERING, 2016, 144 : 133 - 144
  • [3] Early Diagnosis of Huanglongbing Disease in Citrus Seedlings
    Pourreza, Alireza
    Lee, Won Suk
    Diamond, Justice
    Czarnecka, Eva
    Verner, Lance
    Gurley, William
    PROCEEDINGS OF THE FLORIDA STATE HORTICULTURAL SOCIETY, VOL 129, 2020, 129 : 95 - 98
  • [4] Combining Raman spectroscopy and machine learning to assist early diagnosis of gastric cancer
    Li, Chenming
    Liu, Shasha
    Zhang, Qian
    Wan, Dongdong
    Shen, Rong
    Wang, Zhong
    Li, Yuee
    Hu, Bin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 287
  • [5] Infrared spectroscopy: A potential tool in huanglongbing and citrus variegated chlorosis diagnosis
    do Brasil Cardinali, Marcelo Camponez
    Villas Boas, Paulino Ribeiro
    Bastos Pereira Milori, Debora Marcondes
    Ferreira, Ednaldo Jose
    Franca e Silva, Marina
    Machado, Marcos Antonio
    Bellete, Barbara Sayuri
    da Silva, Maria Fatima das Gracas Fernandes
    TALANTA, 2012, 91 : 1 - 6
  • [6] Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing
    Wang, Zhixin
    Niu, Yue
    Vashisth, Tripti
    Li, Jingwen
    Madden, Robert
    Livingston, Taylor Shea
    Wang, Yu
    HORTICULTURE RESEARCH, 2022, 9
  • [7] Machine Learning Approach for Early Detection of Diabetes Using Raman Spectroscopy
    Quang, Tri Ngo
    Nguyen, Thanh Tung
    Viet, Huong Pham Thi
    MOBILE NETWORKS & APPLICATIONS, 2024, 29 (01): : 294 - 305
  • [8] Raman spectroscopy for esophageal tumor diagnosis and delineation using machine learning and the portable Raman spectrometer
    Yang, Junqing
    Xu, Pei
    Wu, Siyi
    Chen, Zhou
    Fang, Shiyan
    Xiao, Haibo
    Hu, Fengqing
    Jiang, Lianyong
    Wang, Lei
    Mo, Bin
    Ding, Fangbao
    Lin, Linley Li
    Ye, Jian
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 317
  • [9] Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique
    Wetterich, Caio Bruno
    de Oliveira Neves, Ruan Felipe
    Belasque, Jose
    Marcassa, Luis Gustavo
    APPLIED OPTICS, 2016, 55 (02) : 400 - 407
  • [10] DETECTION OF HUANGLONGBING DISEASE IN CITRUS USING FLUORESCENCE SPECTROSCOPY
    Sankaran, S.
    Ehsani, R.
    TRANSACTIONS OF THE ASABE, 2012, 55 (01) : 313 - 320