Branched chain amino acids metabolism in heart failure

被引:4
作者
Gao, Chenshan [1 ]
Hou, Lei [1 ,2 ]
机构
[1] Guangxi Med Univ, Regenerat Med & Med BioResource Dev Applicat Cocon, Collaborat Innovat Ctr, Nanning 530021, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Songjiang Dist Cent Hosp, Dept Cardiol, Sch Med, Shanghai, Peoples R China
来源
FRONTIERS IN NUTRITION | 2023年 / 10卷
基金
中国国家自然科学基金;
关键词
branched-chain amino acids; heart failure; metabolic dysregulation; HFrEF - heart failure with reduced ejection fraction; HFpEF - heart failure with preserved ejection fraction; CONTRIBUTES; BIOMARKERS; CATABOLISM; DISEASE;
D O I
10.3389/fnut.2023.1279066
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
As a terminal stage of various cardiovascular diseases, heart failure is of great concern due to its high mortality rate and limited treatment options. Researchers are currently focusing their efforts on investigating the metabolism of carbohydrates, fatty acids, and amino acids to enhance the prognosis of cardiovascular diseases. Simultaneously, branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, play significant roles in blood glucose regulation, protein synthesis, and insulin sensitivity. However, disrupted BCAAs metabolism has been associated with conditions such as hypertension, obesity, and atherosclerosis. This article explores intricate metabolic pathways, unveiling the connection between disrupted BCAAs metabolism and the progression of heart failure. Furthermore, the article discusses therapeutic strategies, assesses the impact of BCAAs on cardiac dysfunction, and examines the potential of modulating BCAAs metabolism as a treatment for heart failure. BCAAs and their metabolites are also considered as biomarkers for evaluating cardiac metabolic risk. In conclusion, this article elucidates the multifaceted roles of BCAAs in heart failure and cardiovascular health, providing guidance for future research and intervention measures.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Insulin resistance and the metabolism of branched-chain amino acids in humans
    María M. Adeva
    Jesús Calviño
    Gema Souto
    Cristóbal Donapetry
    Amino Acids, 2012, 43 : 171 - 181
  • [22] Insulin, branched-chain amino acids, and growth failure in uremia
    Mak, RHK
    PEDIATRIC NEPHROLOGY, 1998, 12 (08) : 637 - 642
  • [23] Is branched-chain amino acid nutritional supplementation beneficial or detrimental in heart failure?
    Narita, Koichi
    Amiya, Eisuke
    WORLD JOURNAL OF CARDIOLOGY, 2021, 13 (06): : 163 - 169
  • [24] The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders
    Du, Chuang
    Liu, Wen-Jie
    Yang, Jing
    Zhao, Shan-Shan
    Liu, Hui-Xin
    FRONTIERS IN NUTRITION, 2022, 9
  • [25] Branched-chain amino acids in cardiovascular disease
    McGarrah, Robert W.
    White, Phillip J.
    NATURE REVIEWS CARDIOLOGY, 2023, 20 (02) : 77 - 89
  • [26] Branched-chain amino acids as biomarkers in diabetes
    Giesbertz, Pieter
    Daniel, Hannelore
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2016, 19 (01) : 48 - 54
  • [27] Time Series Characteristics of Serum Branched-Chain Amino Acids for Early Diagnosis of Chronic Heart Failure
    Li, Ruiting
    He, Hua
    Fang, Shaohong
    Hua, Yunfei
    Yang, Xuping
    Yuan, Yi
    Liang, Shuang
    Liu, Peifang
    Tian, Yuan
    Xu, Fengguo
    Zhang, Zunjian
    Huang, Yin
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (05) : 2121 - 2128
  • [28] Metabolism of branched-chain amino acids in maple syrup urine disease
    Schadewaldt, P
    Wendel, U
    EUROPEAN JOURNAL OF PEDIATRICS, 1997, 156 (Suppl 1) : S62 - S66
  • [29] Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS
    Yudkoff, Marc
    NEUROCHEMICAL RESEARCH, 2017, 42 (01) : 10 - 18
  • [30] Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS
    Marc Yudkoff
    Neurochemical Research, 2017, 42 : 10 - 18