Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries

被引:4
|
作者
Kim, Jae-Hun [1 ]
机构
[1] Kookmin Univ, Sch Mat Sci & Engn, Seoul 02707, South Korea
来源
CORROSION SCIENCE AND TECHNOLOGY-KOREA | 2023年 / 22卷 / 04期
关键词
Interfacial reaction; Li metal; Solid electrolyte; All-solid-state battery; LITHIUM BATTERIES; ELECTROCHEMICAL PERFORMANCE; STABILITY; CONDUCTIVITY; LI7LA3ZR2O12; CHALLENGES; ANODES;
D O I
10.14773/cst.2023.22.4.287
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [41] The nature and suppression strategies of interfacial reactions in all-solid-state batteries
    Ren, Fucheng
    Liang, Ziteng
    Zhao, Wengao
    Zuo, Wenhua
    Lin, Min
    Wu, Yuqi
    Yang, Xuerui
    Gong, Zhengliang
    Yang, Yong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (06) : 2579 - 2590
  • [42] Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries
    Xia, Yang
    Li, Jiaojiao
    Zhang, Jun
    Zhou, Xiaozheng
    Huang, Hui
    He, Xinping
    Gan, Yongping
    Xiao, Zhen
    Zhang, Wenkui
    JOURNAL OF POWER SOURCES, 2022, 543
  • [43] Design principles for interface reaction in all-solid-state batteries
    Li, Xin
    MRS BULLETIN, 2023, 48 (12) : 1230 - 1238
  • [44] Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review
    Yuan, Hong
    Liu, Jia
    Lu, Yang
    Zhao, Chenzi
    Cheng, Xinbing
    Nan, Haoxiong
    Liu, Quanbing
    Huang, Jiaqi
    Zhang, Qiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 377 - 385
  • [45] Coordination polymer-reinforced composite polymer electrolyte for all-solid-state Li-metal batteries
    Yuan, Jiaxi
    Dong, Hao
    Wang, Bin
    Qiu, Ming
    Liu, Zhendong
    Wu, Xiaojun
    Zhong, Sheng
    Tong, Gangsheng
    Chen, Zhenying
    Zhang, Jichao
    Zhang, Qing
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [46] Atomic-level designed LLZO electrolyte for LTO electrode in all-solid-state batteries with superb interfacial properties
    Xu, Changgui
    Xue, Yu
    Zhang, Miao
    Liao, Ningbo
    SURFACES AND INTERFACES, 2023, 40
  • [47] Recent advances of all-solid-state polymer electrolyte for Li-ion batteries
    Ling, ZJ
    He, XM
    Li, JJ
    Jiang, CY
    Wan, CR
    PROGRESS IN CHEMISTRY, 2006, 18 (04) : 459 - 466
  • [48] The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries
    Chen, Ya
    Gao, Xin
    Zhen, Zheng
    Chen, Xiao
    Huang, Ling
    Zhou, Deli
    Hu, Tengfei
    Ren, Bozhen
    Xu, Runjing
    Chen, Jiayi
    Chen, Xiaodong
    Cui, Lifeng
    Wang, Guoxiu
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (23) : 9288 - 9302
  • [49] Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering
    Tong, Huan
    Liu, Jian
    Qiao, Yi
    Song, Xiping
    JOURNAL OF POWER SOURCES, 2022, 521
  • [50] Metastable Chloride Solid Electrolyte with High Formability for Rechargeable All-Solid-State Lithium Metal Batteries
    Tanibata, Naoto
    Takimoto, Shuta
    Nakano, Koki
    Takeda, Hayami
    Nakayama, Masanobu
    Sumi, Hirofumi
    ACS MATERIALS LETTERS, 2020, 2 (08): : 880 - 886