Transfer Learning Enhanced Cross-Subject Hand Gesture Recognition with sEMG

被引:2
|
作者
Zhang, Shenyilang [1 ]
Fang, Yinfeng [1 ]
Wan, Jiacheng [1 ]
Jiang, Guozhang [2 ]
Li, Gongfa [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Wuhan Univ Sci & Technol, Wuhan 430081, Hubei, Peoples R China
关键词
Feature combination; Hand gesture classification; Transfer learning; Alexnet; EMG SIGNALS;
D O I
10.1007/s40846-023-00837-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeThis study explores the emerging field of human physical action classification within human-machine interaction (HMI), with potential applications in assisting individuals with disabilities and robotics. The research focuses on addressing the challenges posed by diverse sEMG signals, aiming for improved cross-subject hand gesture recognition.MethodsThe proposed approach utilizes deep transfer learning technology, employing multi-feature images (MFI) generated through grayscale conversion and RGB mapping of numerical matrices. These MFIs are fed as input into a fine-tuned AlexNet model. Two databases, ISRMyo-I and Ninapro DB1, are employed for experimentation. Rigorous testing is conducted to identify optimal parameters and feature combinations. Data augmentation techniques are applied, doubling the MFI dataset. Cross-subject experiments encompass six wrist gestures from Ninapro DB1 and thirteen gestures from ISRMyo-I.ResultsThe study demonstrates substantial performance enhancements. In Ninapro DB1, the mean accuracy achieves 86.16%, showcasing a 13.25% improvement over the best-performing traditional decoding method. Similarly, in ISRMyo-I, a mean accuracy of 70.41% is attained, signifying a 7.4% increase in accuracy compared to traditional methods.ConclusionThis research establishes a robust framework capable of mitigating cross-user differences in hand gesture recognition based on sEMG signals. By employing deep transfer learning techniques and multi-feature image processing, the study significantly enhances the accuracy of cross-subject hand gesture recognition. This advancement holds promise for enriching human-machine interaction and extending the practical applications of this technology in assisting disabled individuals and robotics.
引用
收藏
页码:672 / 688
页数:17
相关论文
共 50 条
  • [31] Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques
    Zhang, Jianhua
    Wang, Yongcun
    Li, Sunan
    COGNITION TECHNOLOGY & WORK, 2017, 19 (04) : 587 - 605
  • [32] Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy
    Cai Z.
    Guo M.
    Yang X.
    Chen X.
    Xu G.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (03): : 455 - 462
  • [33] Cross-subject mental workload classification using kernel spectral regression and transfer learning techniques
    Jianhua Zhang
    Yongcun Wang
    Sunan Li
    Cognition, Technology & Work, 2017, 19 : 587 - 605
  • [34] Hand Gesture Recognition Using Deep Learning
    Hussain, Soeb
    Saxena, Rupal
    Han, Xie
    Khan, Jameel Ahmed
    Shin, Hyunchul
    PROCEEDINGS INTERNATIONAL SOC DESIGN CONFERENCE 2017 (ISOCC 2017), 2017, : 48 - 49
  • [35] Gesture recognition based on transfer learning
    Wu, Xue
    Song, Xiao-ru
    Gao, Song
    Chen, Chao-bo
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 199 - 202
  • [36] Wrist-Worn Hand Gesture Recognition While Walking via Transfer Learning
    Kang, Peiqi
    Li, Jinxuan
    Fan, Bingfei
    Jiang, Shuo
    Shull, Peter B.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 952 - 961
  • [37] FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition
    Yu, Peng
    He, Xiaopeng
    Li, Haoyu
    Dou, Haowen
    Tan, Yeyu
    Wu, Hao
    Chen, Badong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [38] MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI
    Li, Ang
    Wang, Zhenyu
    Zhao, Xi
    Xu, Tianheng
    Zhou, Ting
    Hu, Honglin
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1743 - 1753
  • [39] Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition
    He, Xinjie
    Allison, Brendan Z.
    Qin, Ke
    Liang, Wei
    Wang, Xingyu
    Cichocki, Andrzej
    Jin, Jing
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (11) : 3071 - 3084
  • [40] InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
    Zeng, Hong
    Zhang, Jiaming
    Zakaria, Wael
    Babiloni, Fabio
    Gianluca, Borghini
    Li, Xiufeng
    Kong, Wanzeng
    SENSORS, 2020, 20 (24) : 1 - 17