Transfer Learning Enhanced Cross-Subject Hand Gesture Recognition with sEMG

被引:2
|
作者
Zhang, Shenyilang [1 ]
Fang, Yinfeng [1 ]
Wan, Jiacheng [1 ]
Jiang, Guozhang [2 ]
Li, Gongfa [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Wuhan Univ Sci & Technol, Wuhan 430081, Hubei, Peoples R China
关键词
Feature combination; Hand gesture classification; Transfer learning; Alexnet; EMG SIGNALS;
D O I
10.1007/s40846-023-00837-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeThis study explores the emerging field of human physical action classification within human-machine interaction (HMI), with potential applications in assisting individuals with disabilities and robotics. The research focuses on addressing the challenges posed by diverse sEMG signals, aiming for improved cross-subject hand gesture recognition.MethodsThe proposed approach utilizes deep transfer learning technology, employing multi-feature images (MFI) generated through grayscale conversion and RGB mapping of numerical matrices. These MFIs are fed as input into a fine-tuned AlexNet model. Two databases, ISRMyo-I and Ninapro DB1, are employed for experimentation. Rigorous testing is conducted to identify optimal parameters and feature combinations. Data augmentation techniques are applied, doubling the MFI dataset. Cross-subject experiments encompass six wrist gestures from Ninapro DB1 and thirteen gestures from ISRMyo-I.ResultsThe study demonstrates substantial performance enhancements. In Ninapro DB1, the mean accuracy achieves 86.16%, showcasing a 13.25% improvement over the best-performing traditional decoding method. Similarly, in ISRMyo-I, a mean accuracy of 70.41% is attained, signifying a 7.4% increase in accuracy compared to traditional methods.ConclusionThis research establishes a robust framework capable of mitigating cross-user differences in hand gesture recognition based on sEMG signals. By employing deep transfer learning techniques and multi-feature image processing, the study significantly enhances the accuracy of cross-subject hand gesture recognition. This advancement holds promise for enriching human-machine interaction and extending the practical applications of this technology in assisting disabled individuals and robotics.
引用
收藏
页码:672 / 688
页数:17
相关论文
共 50 条
  • [1] Transfer Learning Enhanced Cross-Subject Hand Gesture Recognition with sEMG
    Shenyilang Zhang
    Yinfeng Fang
    Jiacheng Wan
    Guozhang Jiang
    Gongfa Li
    Journal of Medical and Biological Engineering, 2023, 43 : 672 - 688
  • [2] A Transfer Learning Strategy for Cross-Subject and Cross-Time Hand Gesture Recognition Based on A-Mode Ultrasound
    Lian, Yue
    Lu, Zongxing
    Huang, Xin
    Shangguan, Qican
    Yao, Ligang
    Huang, Jie
    Liu, Zhoujie
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 17183 - 17192
  • [3] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [4] Cross-Subject Transfer Learning for Boosting Recognition Performance in SSVEP-Based BCIs
    Zhang, Yue
    Xie, Sheng Quan
    Shi, Chaoyang
    Li, Jun
    Zhang, Zhi-Qiang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1574 - 1583
  • [5] Hilbert sEMG data scanning for hand gesture recognition based on deep learning
    Tsinganos, Panagiotis
    Cornelis, Bruno
    Cornelis, Jan
    Jansen, Bart
    Skodras, Athanassios
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07) : 2645 - 2666
  • [6] Cross-subject transfer learning in human activity recognition systems using generative adversarial networks
    Soleimani, Elnaz
    Nazerfard, Ehsan
    NEUROCOMPUTING, 2021, 426 : 26 - 34
  • [7] A Frequency-Based Attention Neural Network and Subject-Adaptive Transfer Learning for sEMG Hand Gesture Classification
    Nguyen, Phuc Thanh-Thien
    Su, Shun-Feng
    Kuo, Chung-Hsien
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7835 - 7842
  • [8] A Multi-Scale CNN for Transfer Learning in sEMG-Based Hand Gesture Recognition for Prosthetic Devices
    Fratti, Riccardo
    Marini, Niccolo
    Atzori, Manfredo
    Mueller, Henning
    Tiengo, Cesare
    Bassetto, Franco
    SENSORS, 2024, 24 (22)
  • [9] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [10] Online cross session electromyographic hand gesture recognition using deep learning and transfer learning
    Zhang, Zhen
    Liu, Shilong
    Wang, Yanyu
    Song, Wei
    Zhang, Yuhui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127