Anisotropic inflation in dipolar Bose-Einstein condensates

被引:0
|
作者
Rana, A. [1 ]
Pendse, A. [1 ,2 ]
Wuester, S. [1 ]
Panda, S. [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Bhopal 462066, Madhya Pradesh, India
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 11期
关键词
inflation; anisotropic inflation; dipolar BEC; Bose-Einstein condensate; analogue gravity; phononic spectra; Bogoliubov excitations; PROBE WMAP OBSERVATIONS; EARLY UNIVERSE; FESHBACH RESONANCES; HAWKING RADIATION; ANALOG; ENTANGLEMENT; DISSIPATION; ASYMMETRY; SPECTRUM; MAPS;
D O I
10.1088/1367-2630/ad091f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Early during the era of cosmic inflation, rotational invariance may have been broken, only later emerging as a feature of low-energy physics. This motivates ongoing searches for residual signatures of anisotropic space-time, for example in the power spectrum of the cosmic microwave background. We propose that dipolar Bose-Einstein condensates (BECs) furnish a laboratory quantum simulation platform for the anisotropy evolution of fluctuation spectra during inflation, exploiting the fact that the speed of dipolar condensate sound waves depends on direction. We construct the anisotropic analogue space-time metric governing sound, by linking the time-varying strength of dipolar and contact interactions in the BEC to the scale factors in different coordinate directions. Based on these, we calculate the dynamics of phonon power spectra during an inflation that renders the initially anisotropic Universe isotropic. We find that the expansion speed provides an experimental handle to control and study the degree of final residual anisotropy. Gravity analogues using dipolar condensates can thus provide tuneable experiments for a field of cosmology that was until now confined to a single experiment, our Universe.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Quantum Landau damping in dipolar Bose-Einstein condensates
    Mendonca, J. T.
    Tercas, H.
    Gammal, A.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [22] Phases of supersolids in confined dipolar Bose-Einstein condensates
    Zhang, Yong-Chang
    Pohl, Thomas
    Maucher, Fabian
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [23] Spin Echo in Spinor Dipolar Bose-Einstein Condensates
    Yasunaga, Masashi
    Tsubota, Makoto
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [24] Roton confinement in trapped dipolar Bose-Einstein condensates
    Jona-Lasinio, M.
    Lakomy, K.
    Santos, L.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [25] Vortex dynamics and turbulence in dipolar Bose-Einstein condensates
    Sabari, S.
    Kumar, R. Kishor
    Tomio, Lauro
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [26] Droplet arrays in doubly dipolar Bose-Einstein condensates
    Ghosh, Ratheejit
    Mishra, Chinmayee
    Santos, Luis
    Nath, Rejish
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [27] Dipolar Bose-Einstein condensates with large scattering length
    Young-S, Luis E.
    Adhikari, S. K.
    Muruganandam, P.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [28] Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates
    Prasad, S. B.
    Bland, T.
    Mulkerin, B. C.
    Parker, N. G.
    Martin, A. M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (05)
  • [29] Helical spin textures in dipolar Bose-Einstein condensates
    Huhtamaki, J. A. M.
    Kuopanportti, P.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [30] The dynamics of three coupled dipolar Bose-Einstein condensates
    Wu Jian-Hua
    Xu Sheng-Nan
    CHINESE PHYSICS B, 2013, 22 (12)