A practical guide to the implementation of AI in orthopaedic research - part 1: opportunities in clinical application and overcoming existing challenges

被引:18
作者
Zsidai, Balint [1 ,2 ]
Hilkert, Ann-Sophie [3 ,4 ]
Kaarre, Janina [1 ,2 ,5 ]
Narup, Eric [1 ,2 ]
Senorski, Eric Hamrin [1 ,6 ,7 ]
Grassi, Alberto [2 ,8 ]
Ley, Christophe [9 ]
Longo, Umile Giuseppe [10 ]
Herbst, Elmar [11 ]
Hirschmann, Michael T. [12 ]
Kopf, Sebastian [13 ,14 ]
Seil, Romain [15 ,16 ]
Tischer, Thomas [17 ]
Samuelsson, Kristian [1 ,2 ,18 ]
Feldt, Robert [2 ]
机构
[1] Sahlgrenska Sports Med Ctr, Gothenburg, Sweden
[2] Univ Gothenburg, Inst Clin Sci, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
[3] Chalmers Univ Technol, Dept Comp Sci & Engn, Gothenburg, Sweden
[4] Medfield Diagnost AB, Gothenburg, Sweden
[5] Univ Pittsburgh, UPMC Freddie Fu Sports Med Ctr, Dept Orthopaed Surg, Pittsburgh, PA USA
[6] Univ Gothenburg, Inst Neurosci & Physiol, Sahlgrenska Acad, Dept Hlth & Rehabil, Gothenburg, Sweden
[7] Sportrehab Sports Med Clin, Gothenburg, Sweden
[8] IRCCS Ist Ortoped Rizzoli, IIa Clin Ortoped & Traumatol, Bologna, Italy
[9] Univ Luxembourg, Dept Math, Esch Sur Alzette, Luxembourg
[10] Campus Biomed Univ, Dept Orthopaed & Trauma Surg, Rome, Italy
[11] Univ Hosp Munster, Dept Trauma Hand & Reconstruct Surg, Munster, Germany
[12] Kantonsspital Baselland, Dept Orthoped Surg & Traumatol, Head Knee Surg & DKF Head Res, CH-4101 Basel, Switzerland
[13] Univ Hosp Brandenburg adH, Ctr Orthopaed & Traumatol, Brandenburg Med Sch Theodor Fontane, D-14770 Brandenburg, Germany
[14] Brandenburg Med Sch Theodor Fontane, Fac Hlth Sci Brandenburg, D-14770 Brandenburg, Germany
[15] Ctr Hosp Luxembourg, Dept Orthopaed Surg, Luxembourg, Luxembourg
[16] Luxembourg Inst Hlth, Luxembourg, Luxembourg
[17] Malteser Waldkrankenhaus St Marien, Clin Orthopaed & Trauma Surg, Erlangen, Germany
[18] Sahlgrens Univ Hosp, Dept Orthopaed, Molndal, Sweden
关键词
Artificial intelligence; AI; Machine learning; ML; Large language models; Ethics; Explainability; Decision support systems; Digital twins; Provenance; Generalizability; Learning series; Orthopaedics; Research methods; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; DEEP; MODEL;
D O I
10.1186/s40634-023-00683-z
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application.Level of evidence IV
引用
收藏
页数:9
相关论文
共 48 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Multimodal biomedical AI [J].
Acosta, Julian N. ;
Falcone, Guido J. ;
Rajpurkar, Pranav ;
Topol, Eric J. .
NATURE MEDICINE, 2022, 28 (09) :1773-1784
[3]   The skill content of recent technological change: An empirical exploration [J].
Autor, DH ;
Levy, F ;
Murnane, RJ .
QUARTERLY JOURNAL OF ECONOMICS, 2003, 118 (04) :1279-1333
[4]  
Bareinboim E., 2022, Probabilistic and Causal Inference: The Works of Judea Pearl, P507
[5]   The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database [J].
Benjamens, Stan ;
Dhunnoo, Pranavsingh ;
Mesko, Bertalan .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[6]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[7]   A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty [J].
Biron, Dustin R. ;
Sinha, Ishan ;
Kleiner, Justin E. ;
Aluthge, Dilum P. ;
Goodman, Avi D. ;
Sarkar, I. Neil ;
Cohen, Eric ;
Daniels, Alan H. .
JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2020, 28 (13) :E580-E585
[8]   Toward a Digital Twin for Arthroscopic Knee Surgery: A Systematic Review [J].
Bjelland, Oystein ;
Rasheed, Bismi ;
Schaathun, Hans Georg ;
Pedersen, Morten D. ;
Steinert, Martin ;
Hellevik, Alf Inge ;
Bye, Robin T. .
IEEE ACCESS, 2022, 10 :45029-45052
[9]   Digital twins to personalize medicine [J].
Bjornsson, Bergthor ;
Borrebaeck, Carl ;
Elander, Nils ;
Gasslander, Thomas ;
Gawel, Danuta R. ;
Gustafsson, Mika ;
Jornsten, Rebecka ;
Lee, Eun Jung ;
Li, Xinxiu ;
Lilja, Sandra ;
Martinez-Enguita, David ;
Matussek, Andreas ;
Sandstrom, Per ;
Schafer, Samuel ;
Stenmarker, Margaretha ;
Sun, X. F. ;
Sysoev, Oleg ;
Zhang, Huan ;
Benson, Mikael .
GENOME MEDICINE, 2019, 12 (01)
[10]   Deep neural networks are superior to dermatologists in melanoma image classification [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Berking, Carola ;
Haferkamp, Sebastian ;
Hauschild, Axel ;
Weichenthal, Michael ;
Klode, Joachim ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
von Kalle, Christof ;
Froehling, Stefan ;
Schilling, Bastian ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 119 :11-17