Important aspects of investigating optical excitations in semiconductors using a scanning transmission electron microscope

被引:1
|
作者
Stoeger-Pollach, Michael [1 ,2 ,6 ]
Bukvisova, Krystina [3 ]
Zenz, Keanu [2 ]
Stoeger, Leo [2 ,4 ]
Scales, Ze [1 ,5 ]
机构
[1] TU Wien, Univ Serv Ctr TEM, Vienna, Austria
[2] TU Wien, Inst Solid State Phys, Vienna, Austria
[3] CEITEC, Brno, Czech Republic
[4] TU Wien, Atominst, Vienna, Austria
[5] KAI Kompetenzzentrum Automobil & Insdustrieelekt G, Villach, Austria
[6] TU Wien, Univ Serv Ctr TEM, A-1040 Vienna, Austria
关键词
cathodoluminescence; optical properties; scanning transmission electron microscopy; VEELS; PARTICLES; LOSSES; DAMAGE; LIMIT;
D O I
10.1111/jmi.13242
中图分类号
TH742 [显微镜];
学科分类号
摘要
Since semiconductor structures are becoming smaller and smaller, the examination methods must also take this development into account. Optical methods have long reached their limits here, but small dimensions are also a challenge for electron beam techniques, especially when it comes to determining optical properties. In this paper, electron microscopic methods of investigating optical properties are discussed. Special attention is given to the physical limits and how to deal with them. We will cover electron energy loss spectrometry as well as cathodoluminescence spectrometry. We pay special attention to inelastic delocalisation, radiation damage, the Cerenkov effect, interference effects of optical excitations and higher diffraction orders on a grating analyser for the cathodoluminescence signal. As semiconductor components continue to evolve, they are shrinking in size. Transistors, the fundamental building blocks of microchips, now measure as small as several nanometres wide. This miniaturisation trend impacts their performance. The investigation of dielectric properties of such building blocks in miniaturised semiconductor devices is best accomplished using electron beam techniques. Thus, one can explore phenomena such as optical properties, bandgap energies and quantum confinement effects. But electron beam techniques also have their physical limitations in terms of spatial resolution, spurious relativistic and interference effects, which are topic of the present work. We utilise the spectroscopic investigation of the probe electrons as well as the emitted light of the electron-sample interaction. We touch topics like delocalisation of the electron-sample interaction, the Cerenkov effect, beam damage and higher-order diffraction at blazed grating analysers.
引用
收藏
页码:138 / 145
页数:8
相关论文
共 50 条
  • [1] Investigating the optical properties of dislocations by scanning transmission electron microscopy
    Pennycook, S. J.
    SCANNING, 2008, 30 (04) : 287 - 298
  • [2] Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope
    Stoeger-Pollach, Michael
    Pichler, Cornelia F.
    Dan, Topa
    Zickler, Gregor A.
    Bukvisova, Kristyna
    Eibl, Oliver
    Brandstaetter, Franz
    ULTRAMICROSCOPY, 2021, 224
  • [3] Cathodoluminescence in the scanning transmission electron microscope
    Kociak, M.
    Zagonel, L. F.
    ULTRAMICROSCOPY, 2017, 176 : 112 - 131
  • [4] Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope
    Blancett, Candace D.
    Fetterer, David P.
    Koistinen, Keith A.
    Morazzani, Elaine M.
    Monninger, Mitchell K.
    Piper, Ashley E.
    Kuehl, Kathleen A.
    Kearney, Brian J.
    Norris, Sarah L.
    Rossi, Cynthia A.
    Glass, Pamela J.
    Sun, Mei G.
    JOURNAL OF VIROLOGICAL METHODS, 2017, 248 : 136 - 144
  • [5] Cathodoluminescence in a Scanning Electron Microscope Operated in Transmission ModeCathodoluminescence in a Scanning Electron Microscope Operated in Transmission ModeSchulz et al.
    Tobias Schulz
    Artur Lachowski
    Robert Kernke
    Martin Albrecht
    Journal of Electronic Materials, 2025, 54 (7) : 5058 - 5065
  • [6] On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope
    Sun, Cheng
    Mueller, Erich
    Meffert, Matthias
    Gerthsen, Dagmar
    MICROSCOPY AND MICROANALYSIS, 2018, 24 (02) : 99 - 106
  • [7] Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
    Trager-Cowan, C.
    Alasmari, A.
    Avis, W.
    Bruckbauer, J.
    Edwards, P. R.
    Ferenczi, G.
    Hourahine, B.
    Kotzai, A.
    Kraeusel, S.
    Kusch, G.
    Martin, R. W.
    McDermott, R.
    Naresh-Kumar, G.
    Nouf-Allehiani, M.
    Pascal, E.
    Thomson, D.
    Vespucci, S.
    Smith, M. D.
    Parbrook, P. J.
    Enslin, J.
    Mehnke, F.
    Kuhn, C.
    Wernicke, T.
    Kneissl, M.
    Hagedorn, S.
    Knauer, A.
    Walde, S.
    Weyers, M.
    Coulon, P-M
    Shields, P. A.
    Bai, J.
    Gong, Y.
    Jiu, L.
    Zhang, Y.
    Smith, R. M.
    Wang, T.
    Winkelmann, A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (05)
  • [8] Path-separated electron interferometry in a scanning transmission electron microscope
    Yasin, Fehmi S.
    Harvey, Tyler R.
    Chess, Jordan J.
    Pierce, Jordan S.
    McMorran, Benjamin J.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (20)
  • [9] Electron Tomography of HEK293T Cells Using Scanning Electron Microscope-Based Scanning Transmission Electron Microscopy
    You, Yun-Wen
    Chang, Hsun-Yun
    Liao, Hua-Yang
    Kao, Wei-Lun
    Yen, Guo-Ji
    Chang, Chi-Jen
    Tsai, Meng-Hung
    Shyue, Jing-Jong
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (05) : 1037 - 1042
  • [10] Analysis of crystal defects by scanning transmission electron microscopy (STEM) in a modern scanning electron microscope
    Sun, Cheng
    Mueller, Erich
    Meffert, Matthias
    Gerthsen, Dagmar
    ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2019, 5