THE "GOOD" BOUSSINESQ EQUATION: LONG-TIME ASYMPTOTICS

被引:42
作者
Charlier, Christophe [1 ]
Lenells, Jonatan [1 ]
Wang, Deng-Shan [2 ]
机构
[1] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing, Peoples R China
基金
中国国家自然科学基金; 欧洲研究理事会; 瑞典研究理事会;
关键词
asymptotics; Boussinesq equation; Riemann-Hilbert problem; inverse scattering transform; initial value problem; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD; GLOBAL EXISTENCE; BEHAVIOR; SCATTERING; LIMIT; NLS;
D O I
10.2140/apde.2023.16.1351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial-value problem for the "good" Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a 3 x 3-matrix Riemann- Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a Deift-Zhou steepest descent analysis of a regularized version of this Riemann-Hilbert problem. Our results are valid for generic solitonless Schwartz class solutions whose space-average remains bounded as t -> infinity.
引用
收藏
页码:1351 / 1388
页数:39
相关论文
共 34 条
[1]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29
[2]   Long time asymptotic behavior of the focusing nonlinear Schrodinger equation [J].
Borghese, Michael ;
Jenkins, Robert ;
McLaughlin, Kenneth D. T-R .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :887-920
[3]  
Boussinesq J., 1872, J. Math. Pures Appl., V17, P55
[4]  
Charlier C, 2022, INDIANA U MATH J, V71, P1505
[5]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[6]   Well-posedness and nonlinear smoothing for the "good" Boussinesq equation on the half-line [J].
Compaan, E. ;
Tzirakis, N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) :5824-5859
[7]  
De Monvel AB, 2019, ANN I FOURIER, V69, P171
[8]   LONG-TIME ASYMPTOTICS FOR THE CAMASSA-HOLM EQUATION [J].
De Monvel, Anne Boutet ;
Kostenko, Aleksey ;
Shepelsky, Dmitry ;
Teschl, Gerald .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) :1559-1588
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]   Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space [J].
Deift, P ;
Zhou, X .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (08) :1029-1077