Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate

被引:5
|
作者
Li, Xuan [1 ]
Jiang, Xingxing [2 ]
Kong, Yan [1 ]
Sun, Jianju [2 ]
Hu, Qi [2 ]
Chai, Xiaoyan [2 ]
Yang, Hengpan [2 ]
He, Chuanxin [2 ]
机构
[1] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen Key Lab Funct Polymer, Shenzhen 518060, Guangdong, Peoples R China
来源
CHINESE JOURNAL OF CATALYSIS | 2023年 / 50卷
基金
中国国家自然科学基金;
关键词
Electrocatalytic CO 2 reduction reaction; Interface; Formate; Eutectic gallium -indium; SURFACE RECONSTRUCTION; LIQUID-METAL; ELECTROREDUCTION; CATALYSTS; PHASE;
D O I
10.1016/S1872-2067(23)64455-9
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrocatalytic CO2 reduction reaction (eCO2RR) to obtain formate is a promising method to con-sume CO2 and alleviate the energy crisis. Indium-based electrocatalysts have demonstrated consid-erable potential to produce formate. However, their unsatisfactory long-term stability and selectiv-ity restrict their widespread application. In this study, a heterostructure of GaN-and In2O3-encapsulated porous carbon nanofibers was constructed via electrospinning and the phase transition of eutectic gallium-indium during calcination. The GaN and In2O3 nanoparti-cle-encapsulated porous carbon nanofibers, when used as electrocatalysts for eCO2RR, displayed high formate selectivity with a faradaic efficiency of 87% and maximum partial current density of 29.7 mA cm-2 in a 0.5 mol L-1 KHCO3 aqueous solution. The existence of the interface can cause a positive shift in the In 3d binding energy, leading to electronic redistribution. Moreover, the GaN component induced a higher proportion of O-vacancy sites in the In2O3 phase, resulting in improved selectivity for CO2-to-formate. In-situ Raman experiments and density functional theory calculations revealed that the interface between GaN and In2O3 could lower the adsorption energy of the key intermediates for formate production, thus providing superior eCO2RR performance. In addition, the framework of the porous carbon nanofibers exhibited a large electrochemically active surface area, which enabled the full exposure of the active sites. This study highlights the cooperation be-tween GaN and In2O3 components and provides new insights into the rational design of catalysts with high CO2-to-formate conversion efficiencies.& COPY; 2023, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 323
页数:10
相关论文
共 50 条
  • [31] Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO
    Ye, Yanzhu
    Liu, Ying
    Li, Zhongshui
    Zou, Xiaohuan
    Wu, Hui
    Lin, Shen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 586 : 528 - 537
  • [32] Sn-Doped Bi2O3 nanosheets for highly efficient electrochemical CO2 reduction toward formate production
    Li, Xiao
    Wu, Xingqiao
    Li, Junjie
    Huang, Jingbo
    Ji, Liang
    Leng, Zihan
    Qian, Ningkang
    Yang, Deren
    Zhang, Hui
    NANOSCALE, 2021, 13 (46) : 19610 - 19616
  • [33] Oxygen vacancy-rich CeOx-Bi2O2CO3 nanosheets for enhancing electrocatalytic reduction of CO2 to formate
    He, Ao
    Wang, Chen
    Zhang, Nianbo
    Wen, Zunqing
    Ma, Yunqian
    Yan, Guihuan
    Xue, Rong
    APPLIED SURFACE SCIENCE, 2023, 638
  • [34] Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate
    Liu, Hai
    Miao, Baiyu
    Chuai, Hongyuan
    Chen, Xiaoyi
    Zhang, Sheng
    Ma, Xinbin
    GREEN CHEMICAL ENGINEERING, 2022, 3 (02) : 138 - 145
  • [35] Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction
    Li, Le
    Ma, De-Kun
    Qi, Feixuanyu
    Chen, Wei
    Huang, Shaoming
    ELECTROCHIMICA ACTA, 2019, 298 : 580 - 586
  • [36] Low cost and efficient alloy electrocatalysts for CO2 reduction to formate
    Rasul, Shahid
    Pugnant, Adrien
    Xiang, Hang
    Fontmorin, Jean-Marie
    Yu, Eileen H.
    JOURNAL OF CO2 UTILIZATION, 2019, 32 : 1 - 10
  • [37] Enhanced formate production from sulfur modified copper for electrocatalytic CO2 reduction
    Wang, Feng
    Jing, Wenhao
    Bai, Shengjie
    Liu, Ya
    Guo, Liejin
    ENERGY, 2024, 313
  • [38] CoP2O6-Assisted Copper/Carbon Catalyst for Electrocatalytic Reduction of CO2 to Formate
    Du, Juan
    Han, Yuxiu
    Zhang, Haobo
    Gao, Xueqing
    Guan, Jing
    Chen, Aibing
    ACS NANO, 2023, 17 (11) : 10055 - 10064
  • [39] Tuning the selectivity of CO2 electroreduction on Cu/In2O3 heterogeneous interface
    Du, Xiaoye
    Fu, Heng
    Gao, Bo
    Xiao, Chunhui
    Ding, Shujiang
    Qian, Dan
    Song, Zhongxiao
    Nam, Ki Tae
    NANO ENERGY, 2024, 120
  • [40] Defect-engineering of tin oxide via (Cu, N) co-doping for electrocatalytic and photocatalytic CO2 reduction into formate
    Yang, Huimin
    Li, Yupeng
    Zhang, Dingding
    Li, Zhifang
    Wang, Jiaxin
    Yang, Donghua
    Hao, Xiaogang
    Guan, Guoqing
    CHEMICAL ENGINEERING SCIENCE, 2020, 227