New synthesis route for high quality iron oxide-based nanorings: Structural and magnetothermal evaluations

被引:8
作者
Aquino, V. R. R. [1 ]
Aquino, J. C. R. [2 ]
Coaquira, J. A. H. [1 ]
Bakuzis, A. F. [3 ]
Sousa, M. H. [4 ]
Morais, P. C. [1 ,5 ]
机构
[1] Univ Brasilia, Inst Fis, Nucleo Fis Aplicada, BR-70910900 Brasilia, DF, Brazil
[2] Univ Nacl Ingn, Fac Ingn Ind & Sistemas, Ave Tupac Amaru 210, Lima 25, Peru
[3] Univ Fed Goias, Inst Fis, BR-74690631 Goiania, GO, Brazil
[4] Univ Brasilia, Fac Ceilandia, Grp Nanotecnol Verde, BR-72220900 Brasilia, DF, Brazil
[5] Univ Catolica Brasilia, Ciencias Genom & Biotecnol, BR-71966700 Brasilia, DF, Brazil
关键词
Magnetic nanoparticle; Hematite nanoring; Magnetite nanoring; Ferrite nanoparticle; Magnetic vortex; Magnetic fluid; Magnetic hyperthermia; MAGNETIC-PROPERTIES; HYPERTHERMIA; NANOPARTICLES; SURFACE; DELIVERY; FLUID;
D O I
10.1016/j.matdes.2023.112082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present study reports on the successful fabrication of high quality monocrystallite magnetite (Fe3O4) nanorings, based on the transformation of monocrystallite hematite (a - Fe3O4) nanorings, using a wet and mild-temperature-mediated chemical route, as an alternative to the traditional solid-solid annealing methods. Additionally, attempts to fabricate ferrite-based nanorings with different stoichiometry through metal-ion (Mn2., Zn2., Co2., and Fe2.) doping and using solid-solid reaction by annealing the hematite nanorings is herein reported. The nanoring morphology is confirmed by electron microscopy micrographs whereas typical magnetic vortex signature is revealed in magnetic hysteresis cycle measurements recorded at room temperature, via collapsing of open loop at low magnetic fields. Rietveld refinement analysis revealed fabrication of single-phase (except one sample revealing two phases) and highquality crystalline nanomaterials, identified with standard ICDD cards. The as-fabricated samples were tested in regard to their performance for magnetic hyperthermia application, using AC magnetic field amplitude of 100, 150, 200, and 240 Oe while setting frequency at 330 kHz. The recorded temperature versus time curves were successfully explained by the Box-Lucas method.& COPY; 2023 The Author(s). Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 52 条
[1]   Magnetic interaction and anisotropy axes arrangement in nanoparticle aggregates can enhance or reduce the effective magnetic anisotropy [J].
Aquino, V. R. R. ;
Figueiredo, L. C. ;
Coaquira, J. A. H. ;
Sousa, M. H. ;
Bakuzis, A. F. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 498
[2]   Role of the Fraction of Blocked Nanoparticles on the Hyperthermia Efficiency of Mn-Based Ferrites at Clinically Relevant Conditions [J].
Aquino, V. R. R. ;
Vinicius-Araujo, M. ;
Shrivastava, Navadeep ;
Sousa, M. H. ;
Coaquira, J. A. H. ;
Bakuzis, A. F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (45) :27725-27734
[3]   Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe2O3 thin films [J].
Aragon, Fermin F. H. ;
Ardisson, Jose D. ;
Aquino, Juan C. R. ;
Gonzalez, Ismael ;
Macedo, Waldemar A. A. ;
Coaquira, Jose A. H. ;
Mantilla, John ;
da Silva, Sebastiao W. ;
Morais, Paulo C. .
THIN SOLID FILMS, 2016, 607 :50-54
[4]   Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers [J].
Bender, Philipp ;
Fock, Jeppe ;
Frandsen, Cathrine ;
Hansen, Mikkel F. ;
Balceris, Christoph ;
Ludwig, Frank ;
Posth, Oliver ;
Wetterskog, Erik ;
Bogart, Lara K. ;
Southern, Paul ;
Szczerba, Wojciech ;
Zeng, Lunjie ;
Witte, Kerstin ;
Gruettner, Cordula ;
Westphal, Fritz ;
Honecker, Dirk ;
Gonzalez-Alonso, David ;
Fernandez Barquin, Luis ;
Johansson, Christer .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (05) :3068-3077
[5]   Structure-Property-Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia [J].
Bertuit, Enzo ;
Benassai, Emilia ;
Meriguet, Guillaume ;
Greneche, Jean-Marc ;
Baptiste, Benoit ;
Neveu, Sophie ;
Wilhelm, Claire ;
Abou-Hassan, Ali .
ACS NANO, 2022, 16 (01) :271-284
[6]   Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia [J].
Branquinho, Luis C. ;
Carriao, Marcus S. ;
Costa, Anderson S. ;
Zufelato, Nicholas ;
Sousa, Marcelo H. ;
Miotto, Ronei ;
Ivkov, Robert ;
Bakuzis, Andris F. .
SCIENTIFIC REPORTS, 2013, 3
[7]   Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study [J].
Carriao, M. S. ;
Aquino, V. R. R. ;
Landi, G. T. ;
Verde, E. L. ;
Sousa, M. H. ;
Bakuzis, A. F. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
[8]  
Chandrasekharan P., 2021, Molecular Imaging, V2nd, P265, DOI [10.1016/b978-0-12-816386-3.00015-6, DOI 10.1016/B978-0-12-816386-3.00015-6]
[9]   Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications [J].
Chandrasekharan, Prashant ;
Tay, Zhi Wei ;
Hensley, Daniel ;
Zhou, Xinyi Y. ;
Fung, Barry K. L. ;
Colson, Caylin ;
Lu, Yao ;
Fellows, Benjamin D. ;
Quincy Huynh ;
Saayujya, Chinmoy ;
Yu, Elaine ;
Orendorff, Ryan ;
Zheng, Bo ;
Goodwill, Patrick ;
Rinaldi, Carlos ;
Conolly, Steven .
THERANOSTICS, 2020, 10 (07) :2965-2981
[10]  
Coey J. M., 2010, Magnetism and Magnetic Materials, DOI DOI 10.1017/CBO9780511845000