Protonation/Deprotonation of Rutile TiO2 in Acid Aqueous Electrolytes

被引:4
|
作者
Shimizu, Masahiro [1 ]
Nishida, Daisuke [1 ]
Kikuchi, Ayaka [2 ]
Arai, Susumu [1 ]
机构
[1] Shinshu Univ, Fac Engn, Dept Mat Chem, Nagano 3808553, Japan
[2] Shinshu Univ, Fac Engn, Tech Div, Nagano 3808553, Japan
基金
日本学术振兴会;
关键词
ANATASE; WATER; OXIDE; SEPARATION; INSERTION; BATTERY; IONS;
D O I
10.1021/acs.jpcc.3c05069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The diversity of carrier ions in electrochemical devices has attracted much attention with regard to the use of protons. If the fast proton conduction originating from the Grotthuss mechanism can be utilized, the development of water-based rechargeable batteries that combine safety and rapid charge-discharge performance is expected. However, the narrow potential window of acid-based aqueous solutions limits the operation of active materials. In this work, the effect of the crystal structure on electrochemical protonation/deprotonation of TiO2 as a negative electrode material was systematically investigated using slurry-based composite electrodes. In the galvanostatic charge-discharge tests using a buffer electrolyte consisting of 1 M citric acid and 1 M trisodium citrate, the protonation of the rutile TiO2 proceeded at a higher potential than those of the anatase and brookite TiO2, resulting in reversible capacities of 102 and 87 mA h g(-1) at the first cycle and 50th cycle, respectively, due to the decrease in irreversible hydrogen evolution. X-ray diffraction revealed that the protonation occurred inside the bulk, although the changes in the a and c axes during protonation/deprotonation were much smaller than those of Li+ and Na+ insertion. On the other hand, in particle sizes larger than 100 nm, the hydrogen evolution was dominant and the deprotonation was less in the anatase TiO2, and neither charging/discharging nor even the hydrogen generation occurred in the larger rutile TiO2. This is presumably due to the slow proton diffusion in the solid phases, which stalls the proton storage and induces the reduction of protons at the electrode-electrolyte interface. These obstacles should be overcome by nanosizing the particles and optimizing electrolyte compositions.
引用
收藏
页码:17677 / 17684
页数:8
相关论文
共 50 条
  • [41] Highly Active Rutile TiO2 Nanocrystalline Photocatalysts
    Djokic, Veljko R.
    Marinkovic, Aleksandar D.
    Petrovic, Rada D.
    Ersen, Ovidiu
    Zafeiratos, Spyridon
    Mitric, Miodrag
    Ophus, Colin
    Radmilovic, Velimir R.
    Janackovic, Djordje T.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 33058 - 33068
  • [42] Hydrogen shallow donors in ZnO and rutile TiO2
    Weber, Joerg
    Lavrov, Edward V.
    Herklotz, Frank
    PHYSICA B-CONDENSED MATTER, 2012, 407 (10) : 1456 - 1461
  • [43] Muonium donor in rutile TiO2 and comparison with hydrogen
    Vilao, R. C.
    Vieira, R. B. L.
    Alberto, H. V.
    Gil, J. M.
    Weidinger, A.
    Lichti, R. L.
    Baker, B. B.
    Mengyan, P. W.
    Lord, J. S.
    PHYSICAL REVIEW B, 2015, 92 (08)
  • [44] Dual behavior of excess electrons in rutile TiO2
    Janotti, A.
    Franchini, C.
    Varley, J. B.
    Kresse, G.
    Van de Walle, C. G.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (03): : 199 - 203
  • [45] Photochemistry of 2-Propanol on Rutile TiO2(110)
    Xue, Guigu
    Lai, Yuemiao
    Li, Fangliang
    Li, Yinuo
    Liu, Peng
    Guo, Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (08) : 3949 - 3956
  • [46] Multigenerational effects of TiO2 rutile nanoparticles on earthworms
    Samarasinghe, Samarasinghe Vidane Arachchige Chamila
    Krishnan, Kannan
    Aitken, Robert John
    Naidu, Ravi
    Megharaj, Mallavarapu
    ENVIRONMENTAL POLLUTION, 2023, 336
  • [47] Effect of Concentration on the Growth of Rutile TiO2 Nanocrystals
    Danish, Rehan
    Ahmed, Faheem
    Koo, Bon Heun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (11) : 8584 - 8589
  • [48] EPR Study of TiO2 (Rutile) Doped with Vanadium
    Kokorin, A. I.
    Sukhanov, A. A.
    Gromov, O. I.
    Arakelyan, V. M.
    Aroutiounian, V. M.
    Voronkova, V. K.
    APPLIED MAGNETIC RESONANCE, 2016, 47 (05) : 479 - 485
  • [49] Photocatalytic nanocomposite anatase–rutile TiO2 coating
    Fatemehsadat Moosavi
    Alex Lemarchand
    Cyrille Bazin
    Maria Konstantakopoulou
    Mathieu Frégnaux
    Christophe Colbeau-Justin
    Touraj Tavakoli Gheinani
    Andrei Kanaev
    Mehrdad Nikravech
    Applied Physics A, 2022, 128
  • [50] Dual Mechanism of Indium Incorporation into TiO2 (Rutile)
    Nowotny, Janusz
    Bak, Tadeusz
    Alim, Mohammad A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (02) : 1146 - 1154