Velocity diagram of traveling waves for discrete reaction-diffusion equations

被引:1
作者
Al Haj, M. [1 ]
Monneau, R. [2 ,3 ]
机构
[1] Lebanese Univ, Fac Sci, Sect 5, Nabatieh, Lebanon
[2] Univ Paris Est, Ecole Ponts ParisTech, CERMICS, 6-8 Ave Blaise Pascal, F-77455 Marne La Vallee 2, France
[3] Univ Paris 09, CEREMADE, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 06期
关键词
Velocity diagram; Traveling waves; Degenerate monostable nonlinearity; Bistable non-linearity; Frenkel-Kontorova model; Viscosity solutions; Perron's method; FRONT PROPAGATION; EXISTENCE; UNIQUENESS; HOMOGENIZATION;
D O I
10.1007/s00030-023-00871-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a discrete version of reaction-diffusion equations. A typical example is the fully overdamped Frenkel-Kontorova model, where the velocity is proportional to the force. We also introduce an additional exterior force denoted by s. For general discrete and fully nonlinear dynamics, we study traveling waves of velocity c = c(s) depending on the parameter s. Under certain assumptions, we show properties of the velocity diagram c(s) for s. [s-, s +]. We show that the velocity c is nondecreasing in s. (s-, s+) in the bistable regime, with vertical branches c = c+ for s = s+ and c = c- for s = s- in the monostable regime.
引用
收藏
页数:27
相关论文
共 25 条
[11]   Nonlocal anisotropic dispersal with monostable nonlinearity [J].
Coville, Jerome ;
Davila, Juan ;
Martinez, Salome .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3080-3118
[12]   HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES [J].
Forcadel, N. ;
Imbert, C. ;
Monneau, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) :6187-6227
[13]   Homogenization of fully overdamped Frenkel-Kontorova models [J].
Forcadel, N. ;
Imbert, C. ;
Monneau, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1057-1097
[14]   Traveling wave solutions for some discrete quasilinear parabolic equations [J].
Fu, SC ;
Guo, JS ;
Shieh, SY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (08) :1137-1149
[15]  
Guo JS, 2008, OSAKA J MATH, V45, P327
[16]   Front propagation for discrete periodic monostable equations [J].
Guo, Jong-Shenq ;
Hamel, Francois .
MATHEMATISCHE ANNALEN, 2006, 335 (03) :489-525
[17]   FRONT PROPAGATION FOR A TWO-DIMENSIONAL PERIODIC MONOSTABLE LATTICE DYNAMICAL SYSTEM [J].
Guo, Jong-Shenq ;
Wu, Chang-Hong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :197-223
[18]  
Hamel F, 2001, ARCH RATION MECH AN, V157, P91, DOI 10.1007/s002050100131
[19]   TRAVELING WAVE SOLUTIONS FOR A REACTION DIFFUSION EQUATION WITH DOUBLE DEGENERATE NONLINEARITIES [J].
Hou, Xiaojie ;
Li, Yi ;
Meyer, Kenneth R. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :265-290
[20]  
HUDSON W., 1994, Comm. App. Nonlinear Analysis, V1, P23