Velocity diagram of traveling waves for discrete reaction-diffusion equations

被引:1
作者
Al Haj, M. [1 ]
Monneau, R. [2 ,3 ]
机构
[1] Lebanese Univ, Fac Sci, Sect 5, Nabatieh, Lebanon
[2] Univ Paris Est, Ecole Ponts ParisTech, CERMICS, 6-8 Ave Blaise Pascal, F-77455 Marne La Vallee 2, France
[3] Univ Paris 09, CEREMADE, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 06期
关键词
Velocity diagram; Traveling waves; Degenerate monostable nonlinearity; Bistable non-linearity; Frenkel-Kontorova model; Viscosity solutions; Perron's method; FRONT PROPAGATION; EXISTENCE; UNIQUENESS; HOMOGENIZATION;
D O I
10.1007/s00030-023-00871-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a discrete version of reaction-diffusion equations. A typical example is the fully overdamped Frenkel-Kontorova model, where the velocity is proportional to the force. We also introduce an additional exterior force denoted by s. For general discrete and fully nonlinear dynamics, we study traveling waves of velocity c = c(s) depending on the parameter s. Under certain assumptions, we show properties of the velocity diagram c(s) for s. [s-, s +]. We show that the velocity c is nondecreasing in s. (s-, s+) in the bistable regime, with vertical branches c = c+ for s = s+ and c = c- for s = s- in the monostable regime.
引用
收藏
页数:27
相关论文
共 25 条
[1]   Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models [J].
Al Haj, M. ;
Forcadel, N. ;
Monneau, R. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :45-99
[2]  
Al Haj M., 2022, TRAVELING WAVES DISC
[3]  
Al Haj M., 2014, EXISTENCE TRAVELING
[4]   The velocity diagram for traveling waves [J].
Al Haj, Mohammad ;
Monneau, Regis .
COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) :777-782
[5]  
Braun O. M., 2004, TEXT MONOGR
[6]   Wave solutions for a discrete reaction-diffusion equation [J].
Carpio, A ;
Chapman, SJ ;
Hastings, S ;
McLeod, JB .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :399-412
[7]   Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics [J].
Chen, XF ;
Guo, JS .
MATHEMATISCHE ANNALEN, 2003, 326 (01) :123-146
[8]   Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations [J].
Chen, XF ;
Guo, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :549-569
[9]   Traveling waves in discrete periodic media for bistable dynamics [J].
Chen, Xinfu ;
Guo, Jong-Shenq ;
Wu, Chin-Chin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 189 (02) :189-236
[10]   Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices [J].
Chen, Xinfu ;
Fu, Sheng-Chen ;
Guo, Jong-Shenq .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :233-258