Energy conservation of weak solutions for the incompressible Euler equations via vorticity

被引:3
|
作者
Liu, Jitao [1 ]
Wang, Yanqing [2 ]
Ye, Yulin [3 ]
机构
[1] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Euler equations; Nonhomogeneous Euler equations; Energy conservation; Vorticity; CONJECTURE;
D O I
10.1016/j.jde.2023.06.048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Math. Phys. 348: 129-143, 2016] and Chen and Yu in [5, J. Math. Pures Appl. 131: 1-16, 2019], we address how the Lp control of vorticity could influence the energy conservation for the incompressible homogeneous and nonhomogeneous Euler equations in this paper. For the homogeneous flow in the periodic domain or whole space, we provide a self-contained proof for the criterion & omega; = curl v & ISIN; L3 (0, T; L n+23n (2)) (n = 2, 3), that generalizes the corresponding result in [8] and can be viewed as in Onsager critical spatiotemporal spaces. Regarding the nonhomogeneous flow, it is shown that the energy is conserved as long as the vorticity lies in the same space as before and backward difference & RADIC;& rho; belongs to L & INFIN;(0, T ; Ln(Tn)) (n = 2, 3), which gives an affirmative answer to a problem proposed by Chen and Yu in [5]. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 279
页数:26
相关论文
共 50 条
  • [31] Global well-posedness of weak solutions to the incompressible Euler equations with helical symmetry in R3
    Guo, Dengjun
    Zhao, Lifeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 806 - 868
  • [32] Incompressible limit of solutions of multidimensional steady compressible Euler equations
    Gui-Qiang G. Chen
    Feimin Huang
    Tian-Yi Wang
    Wei Xiang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [33] Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations
    Adrian Constantin
    Walter A. Strauss
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 181 - 201
  • [34] Energy conservation for weak solutions to the pressureless Euler-Navier-Stokes system in three-dimensional space
    Chen, Senming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1903 - 1914
  • [35] Time almost-periodic solutions of the incompressible Euler equations
    Franzoi, Luca
    Montalto, Riccardo
    MATHEMATICS IN ENGINEERING, 2024, 6 (03): : 394 - 406
  • [36] ON THE BREAKDOWN OF SOLUTIONS TO THE INCOMPRESSIBLE EULER EQUATIONS WITH FREE SURFACE BOUNDARY
    Ginsberg, Daniel
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 3366 - 3384
  • [37] Incompressible limit of solutions of multidimensional steady compressible Euler equations
    Chen, Gui-Qiang G.
    Huang, Feimin
    Wang, Tian-Yi
    Xiang, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [38] Energy Conservation for the Compressible Euler Equations and Elastodynamics
    Ye, Yulin
    Wang, Yanqing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2025, 27 (01)
  • [39] Regularity and Energy Conservation for the Compressible Euler Equations
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1375 - 1395
  • [40] On the convergence of residual distribution schemes for the compressible Euler equations via dissipative weak solutions
    Abgrall, Remi
    Lukacova-Medvid'ova, Maria
    Oeffner, Philipp
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (01) : 139 - 173