Federated Learning Over Wireless Networks: Challenges and Solutions

被引:17
作者
Beitollahi, Mahdi [1 ]
Lu, Ning [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
关键词
Communication resources; federated learning (FL); power limitation; wireless networks; STOCHASTIC GRADIENT DESCENT; PRIVACY; OPTIMIZATION; CONVERGENCE; FRAMEWORK; SECURITY;
D O I
10.1109/JIOT.2023.3285868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by ever-increasing computational resources at edge devices and increasing privacy concerns, a new machine learning (ML) framework called federated learning (FL) has been proposed. FL enables user devices, such as mobile and Internet of Things (IoT) devices, to collaboratively train an ML model by only sending the model parameters instead of raw data. FL is considered the key enabling approach for privacy-preserving, distributed ML systems. However, FL requires frequent exchange of learned model updates between multiple user devices and the cloud/edge server, which introduces a significant communication overhead and hence imposes a major challenge in FL over wireless networks that are limited in communication resources. Moreover, FL consumes a considerable amount of energy in the process of transmitting learned model updates, which imposes another challenge in FL over wireless networks that usually include unplugged devices with limited battery resources. Besides, there are still other privacy issues in practical implementations of FL over wireless networks. In this survey, we discuss each of the mentioned challenges and their respective state-of-the-art proposed solutions in an in-depth manner. By illustrating the tradeoff between each of the solutions, we discuss the underlying effect of the wireless network on the performance of FL. Finally, by highlighting the gaps between research and practical implementations, we identify future research directions for engineering FL over wireless networks.
引用
收藏
页码:14749 / 14763
页数:15
相关论文
共 50 条
  • [31] Knowledge Caching for Federated Learning in Wireless Cellular Networks
    Zheng, Xin-Ying
    Lee, Ming-Chun
    Hsu, Kai-Chieh
    Hong, Y. -W. Peter
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 9235 - 9250
  • [32] From Federated to Fog Learning: Distributed Machine Learning over Heterogeneous Wireless Networks
    Hosseinalipour, Seyyedali
    Brinton, Christopher G.
    Aggarwal, Vaneet
    Dai, Huaiyu
    Chiang, Mung
    IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (12) : 41 - 47
  • [33] Compressed Hierarchical Federated Learning for Edge-Level Imbalanced Wireless Networks
    Liu, Yuan
    Qu, Zhe
    Wang, Jianxin
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [34] Performance Analysis for Resource Constrained Decentralized Federated Learning Over Wireless Networks
    Yan, Zhigang
    Li, Dong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4084 - 4100
  • [35] Challenges and future directions of secure federated learning: a survey
    Zhang, Kaiyue
    Song, Xuan
    Zhang, Chenhan
    Yu, Shui
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (05)
  • [36] Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges
    Sandeepa, Chamara
    Zeydan, Engin
    Samarasinghe, Tharaka
    Liyanage, Madhusanka
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 90 - 129
  • [37] FedPCC: Parallelism of Communication and Computation for Federated Learning in Wireless Networks
    Zhang, Hong
    Tian, Hao
    Dong, Mianxiong
    Ota, Kaoru
    Jia, Juncheng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (06): : 1368 - 1377
  • [38] Federated Learning for IoT: Applications, Trends, Taxonomy, Challenges, Current Solutions, and Future Directions
    Adam, Mumin
    Baroudi, Uthman
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 7842 - 7877
  • [39] Debiased Device Sampling for Federated Edge Learning in Wireless Networks
    Chen, Siguang
    Li, Qun
    Shi, Yanhang
    Li, Xue
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (02) : 709 - 721
  • [40] Hierarchical Federated Learning in Wireless Networks: Pruning Tackles Bandwidth Scarcity and System Heterogeneity
    Pervej, Md Ferdous
    Jin, Richeng
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11417 - 11432