Federated Learning Over Wireless Networks: Challenges and Solutions

被引:17
作者
Beitollahi, Mahdi [1 ]
Lu, Ning [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
关键词
Communication resources; federated learning (FL); power limitation; wireless networks; STOCHASTIC GRADIENT DESCENT; PRIVACY; OPTIMIZATION; CONVERGENCE; FRAMEWORK; SECURITY;
D O I
10.1109/JIOT.2023.3285868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by ever-increasing computational resources at edge devices and increasing privacy concerns, a new machine learning (ML) framework called federated learning (FL) has been proposed. FL enables user devices, such as mobile and Internet of Things (IoT) devices, to collaboratively train an ML model by only sending the model parameters instead of raw data. FL is considered the key enabling approach for privacy-preserving, distributed ML systems. However, FL requires frequent exchange of learned model updates between multiple user devices and the cloud/edge server, which introduces a significant communication overhead and hence imposes a major challenge in FL over wireless networks that are limited in communication resources. Moreover, FL consumes a considerable amount of energy in the process of transmitting learned model updates, which imposes another challenge in FL over wireless networks that usually include unplugged devices with limited battery resources. Besides, there are still other privacy issues in practical implementations of FL over wireless networks. In this survey, we discuss each of the mentioned challenges and their respective state-of-the-art proposed solutions in an in-depth manner. By illustrating the tradeoff between each of the solutions, we discuss the underlying effect of the wireless network on the performance of FL. Finally, by highlighting the gaps between research and practical implementations, we identify future research directions for engineering FL over wireless networks.
引用
收藏
页码:14749 / 14763
页数:15
相关论文
共 50 条
  • [21] Green, Quantized Federated Learning Over Wireless Networks: An Energy-Efficient Design
    Kim, Minsu
    Saad, Walid
    Mozaffari, Mohammad
    Debbah, Merouane
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (02) : 1386 - 1402
  • [22] Federated Learning Over Multihop Wireless Networks With In-Network Aggregation
    Chen, Xianhao
    Zhu, Guangyu
    Deng, Yiqin
    Fang, Yuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 4622 - 4634
  • [23] Adaptive Semi-Asynchronous Federated Learning Over Wireless Networks
    Chen, Zhixiong
    Yi, Wenqiang
    Shin, Hyundong
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (01) : 394 - 409
  • [24] Adaptive Model Pruning and Personalization for Federated Learning Over Wireless Networks
    Liu, Xiaonan
    Ratnarajah, Tharmalingam
    Sellathurai, Mathini
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4395 - 4411
  • [25] Communication Efficient Federated Learning With Energy Awareness Over Wireless Networks
    Jin, Richeng
    He, Xiaofan
    Dai, Huaiyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) : 5204 - 5219
  • [26] Resource Management and Fairness for Federated Learning over Wireless Edge Networks
    Balakrishnan, Ravikumar
    Akdeniz, Mustafa
    Dhakal, Sagar
    Himayat, Nageen
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [27] Convergence Time Minimization for Federated Reinforcement Learning over Wireless Networks
    Wang, Sihua
    Chen, Mingzhe
    Yin, Changchuan
    Poor, H. Vincent
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 246 - 251
  • [28] Federated Learning in Wireless Networks via Over-the-Air Computations
    Oksuz, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4379 - 4386
  • [29] A systematic review of federated learning from clients' perspective: challenges and solutions
    Shanmugarasa, Yashothara
    Paik, Hye-young
    Kanhere, Salil S.
    Zhu, Liming
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 1773 - 1827
  • [30] Communication-Efficient Federated Multitask Learning Over Wireless Networks
    Ma, Haoyu
    Guo, Huayan
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 609 - 624