Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction

被引:77
作者
Zhu, Jiexin [1 ,2 ]
Li, Jiantao [1 ]
Lu, Ruihu [3 ]
Yu, Ruohan [1 ]
Zhao, Shiyong [4 ]
Li, Chengbo [5 ]
Lv, Lei [1 ]
Xia, Lixue [6 ]
Chen, Xingbao [1 ]
Cai, Wenwei [1 ]
Meng, Jiashen [1 ,7 ]
Zhang, Wei [1 ]
Pan, Xuelei [1 ]
Hong, Xufeng [7 ]
Dai, Yuhang [1 ,2 ]
Mao, Yu [3 ]
Li, Jiong [8 ]
Zhou, Liang [1 ,9 ]
He, Guanjie [2 ]
Pang, Quanquan [7 ]
Zhao, Yan [6 ]
Xia, Chuan [5 ]
Wang, Ziyun [3 ]
Dai, Liming [4 ]
Mai, Liqiang [1 ,9 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[3] Univ Auckland, Sch Chem Sci, Auckland 1010, New Zealand
[4] Univ New South Wales, Australian Carbon Mat Ctr A CMC, Sch Chem Engn, Sydney, NSW 2052, Australia
[5] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu, Peoples R China
[6] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
[7] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[8] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China
[9] Wuhan Univ Technol, Hubei Longzhong Lab, Xiangyang Demonstrat Zone, Xiangyang 441000, Hubei, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; CONVERSION; METAL; ELECTROLYSIS; FORMATE;
D O I
10.1038/s41467-023-40342-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm(-2) (200 mA cell current). Achieving high pure formic acid production from CO2 electroconversion is of high interest yet challenging. Here the authors report vitamin C functionalized Bi3S2 nanowire catalyst to achieve selective, active, and stable formic acid production.
引用
收藏
页数:13
相关论文
共 66 条
[1]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[2]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[3]   Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO2 Methanation [J].
Chen, Shenghua ;
Zhang, Zedong ;
Jiang, Wenjun ;
Zhang, Shishi ;
Zhu, Jiexin ;
Wang, Liqiang ;
Ou, Honghui ;
Zaman, Shahid ;
Tan, Lin ;
Zhu, Peng ;
Zhang, Erhuan ;
Jiang, Peng ;
Su, Yaqiong ;
Wang, Dingsheng ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (28) :12807-12815
[4]   Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes [J].
Chen, Xinyi ;
Chen, Junfeng ;
Alghoraibi, Nawal M. ;
Henckel, Danielle A. ;
Zhang, Ruixian ;
Nwabara, Uzoma O. ;
Madsen, Kenneth E. ;
Kenis, Paul J. A. ;
Zimmerman, Steven C. ;
Gewirth, Andrew A. .
NATURE CATALYSIS, 2021, 4 (01) :20-27
[5]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[6]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[7]   Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO2 Electroreduction to Formate [J].
Deng, Peilin ;
Yang, Fan ;
Wang, Zhitong ;
Chen, Shenghua ;
Zhou, Yinzheng ;
Zaman, Shahid ;
Xia, Bao Yu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10807-10813
[8]   Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate [J].
Deng, Peilin ;
Wang, Hongming ;
Qi, Ruijuan ;
Zhu, Jiexin ;
Chen, Shenghua ;
Yang, Fan ;
Zhou, Liang ;
Qi, Kai ;
Liu, Hongfang ;
Xia, Bao Yu .
ACS CATALYSIS, 2020, 10 (01) :743-750
[9]   Anodized Indium Metal Electrodes for Enhanced Carbon Dioxide Reduction in Aqueous Electrolyte [J].
Detweiler, Zachary M. ;
White, James L. ;
Bernasek, Steven L. ;
Bocarsly, Andrew B. .
LANGMUIR, 2014, 30 (25) :7593-7600
[10]   Electrocatalytic metal hydride generation using CPET mediators [J].
Dey, Subal ;
Masero, Fabio ;
Brack, Enzo ;
Fontecave, Marc ;
Mougel, Victor .
NATURE, 2022, 607 (7919) :499-+