A modular fault diagnosis method for rolling bearing based on mask kernel and multi-head self-attention mechanism

被引:7
|
作者
Li, Sifan [1 ]
Xu, Yanhe [1 ]
Jiang, Wei [2 ,3 ]
Zhao, Kunjie [1 ]
Liu, Wei [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan, Peoples R China
[2] Huaiyin Inst Technol, Jiangsu Key Lab Adv Mfg Technol, Huaian, Peoples R China
[3] Huaiyin Inst Technol, Jiangsu Key Lab Adv Mfg Technol, Huaian 223003, Peoples R China
关键词
Modular fault diagnosis; convolution kernel; transformer; imbalanced data;
D O I
10.1177/01423312231188777
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven methods have been applied in fault diagnosis. However, in practical engineering, workers are more concerned with the real-time health status of bearings. And it is difficult to complete the effective training of diagnostic models with insufficient labeled fault data. Therefore, this paper proposes a modular method based on a mask kernel and multi-head self-attention mechanism for rolling bearing fault diagnosis. First, the proposed method divides the diagnosis into two modules of status detection and fault recognition. The approach of sharing one backbone for both modules simplifies the optimization process. The method combines the translation invariance of the convolution kernel and the mask attention mechanism of the transformer by computing the local self-attention and superimposing the partial local attention by the mask to ensure the integrity of the information. Finally, a zero-shot training method is proposed to embed the query into the model to achieve cross-distribution fault diagnosis of bearings. The experiments on the data sets of Case Western Reserve University and machinery fault simulator are implemented to diagnose the bearings. The results show that the proposed method can obtain higher diagnostic accuracy and computational efficiency than the existing methods and can be valid for scenarios with cross-condition diagnosis or imbalanced samples.
引用
收藏
页码:899 / 912
页数:14
相关论文
共 50 条
  • [41] BMNet: Enhancing Deepfake Detection Through BiLSTM and Multi-Head Self-Attention Mechanism
    Xiong, Demao
    Wen, Zhan
    Zhang, Cheng
    Ren, Dehao
    Li, Wenzao
    IEEE ACCESS, 2025, 13 : 21547 - 21556
  • [42] Lip Recognition Based on Bi-GRU with Multi-Head Self-Attention
    Ni, Ran
    Jiang, Haiyang
    Zhou, Lu
    Lu, Yuanyao
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT III, AIAI 2024, 2024, 713 : 99 - 110
  • [43] A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention Mechanism
    Wang, Xiaojia
    Hua, Tong
    Xu, Sheng
    Zhao, Xibin
    MACHINES, 2023, 11 (02)
  • [44] Multi-head enhanced self-attention network for novelty detection
    Zhang, Yingying
    Gong, Yuxin
    Zhu, Haogang
    Bai, Xiao
    Tang, Wenzhong
    PATTERN RECOGNITION, 2020, 107
  • [45] Neural Linguistic Steganalysis via Multi-Head Self-Attention
    Jiao, Sai-Mei
    Wang, Hai-feng
    Zhang, Kun
    Hu, Ya-qi
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021 (2021)
  • [46] Multi-modal multi-head self-attention for medical VQA
    Vasudha Joshi
    Pabitra Mitra
    Supratik Bose
    Multimedia Tools and Applications, 2024, 83 : 42585 - 42608
  • [47] Personalized News Recommendation with CNN and Multi-Head Self-Attention
    Li, Aibin
    He, Tingnian
    Guo, Yi
    Li, Zhuoran
    Rong, Yixuan
    Liu, Guoqi
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 102 - 108
  • [48] Multi-head Self-attention Recommendation Model based on Feature Interaction Enhancement
    Yin, Yunfei
    Huang, Caihao
    Sun, Jingqin
    Huang, Faliang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1740 - 1745
  • [49] Personalized multi-head self-attention network for news recommendation
    Zheng, Cong
    Song, Yixuan
    NEURAL NETWORKS, 2025, 181
  • [50] A recursive multi-head self-attention learning for acoustic-based gear fault diagnosis in real-industrial noise condition
    Yao, Yong
    Gui, Gui
    Yang, Suixian
    Zhang, Sen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133