Minkowski Inequality in Cartan-Hadamard Manifolds

被引:1
|
作者
Ghomi, Mohammad [1 ]
Spruck, Joel [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
ALEXANDROV-FENCHEL-TYPE; ISOPERIMETRIC INEQUALITY; HYPERBOLIC SPACE; HYPERSURFACES; CURVATURE; SURFACES;
D O I
10.1093/imrn/rnad114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using harmonic mean curvature flow, we establish a sharp Minkowski-type lower bound for total mean curvature of convex surfaces with a given area in CartanHadamard 3-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic 3-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved 3-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan-Hadamard manifolds of any dimension.
引用
收藏
页码:17892 / 17910
页数:19
相关论文
共 50 条
  • [21] Automorphisms of Riemann-Cartan manifolds
    Pan'zhenskii, V. I.
    MATHEMATICAL NOTES, 2015, 98 (3-4) : 613 - 623
  • [22] The Brunn-Minkowski inequality
    Gardner, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [23] Topological structures of event horizons along framed null Cartan curves in Minkowski space
    Yu, Xintong
    Liu, Siyao
    Wang, Zhigang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (12)
  • [24] Inextensible Flows of Null Cartan Curves in Minkowski Space R2,1
    Gaber, Samah
    Elaiw, Abeer Al
    UNIVERSE, 2023, 9 (03)
  • [25] GEODESICS AVOIDING SUBSETS IN HADAMARD MANIFOLDS
    Borbely, Albert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) : 1085 - 1092
  • [26] The hyperbolic rank of homogeneous Hadamard manifolds
    Thomas Foertsch
    manuscripta mathematica, 2002, 109 : 109 - 120
  • [27] Sobolev interpolation inequalities on Hadamard manifolds
    Farkas, Csaba
    Kristaly, Alexandru
    Szakal, Aniko
    2016 IEEE 11TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2016, : 161 - 165
  • [28] The log-Brunn-Minkowski inequality
    Boeroeczky, Karoly J.
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1974 - 1997
  • [29] The General Minkowski Inequality for Mixed Volume
    Lv, Yusha
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [30] A MINKOWSKI TYPE INEQUALITY IN WARPED CYLINDERS
    Pan, Shujing
    Yang, Bo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (03) : 2061 - 2089