Minkowski Inequality in Cartan-Hadamard Manifolds

被引:2
作者
Ghomi, Mohammad [1 ]
Spruck, Joel [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
ALEXANDROV-FENCHEL-TYPE; ISOPERIMETRIC INEQUALITY; HYPERBOLIC SPACE; HYPERSURFACES; CURVATURE; SURFACES;
D O I
10.1093/imrn/rnad114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using harmonic mean curvature flow, we establish a sharp Minkowski-type lower bound for total mean curvature of convex surfaces with a given area in CartanHadamard 3-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic 3-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved 3-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan-Hadamard manifolds of any dimension.
引用
收藏
页码:17892 / 17910
页数:19
相关论文
共 47 条
[1]  
Andrews B., 2020, GRAD STUD MATH, V206
[2]   Harmonic mean curvature flow and geometric inequalities [J].
Andrews, Ben ;
Hu, Yingxiang ;
Li, Haizhong .
ADVANCES IN MATHEMATICS, 2020, 375
[3]   Quermassintegral preserving curvature flow in Hyperbolic space [J].
Andrews, Ben ;
Wei, Yong .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) :1183-1208
[4]  
[Anonymous], 2010, Mean Curvature Flow and Isoperimetric Inequalities
[5]   A Minkowski Inequality for Hypersurfaces in the Anti-de Sitter-Schwarzschild Manifold [J].
Brendle, Simon ;
Hung, Pei-Ken ;
Wang, Mu-Tao .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (01) :124-144
[6]  
Bridson M.R., 1999, Metric Spaces of Non-Positive Curvature, DOI [DOI 10.1007/978-3-662-12494-9, 10.1007/978-3-662-12494-9]
[7]   Inequalities for quermassintegrals on k-convex domains [J].
Chang, Sun-Yung Alice ;
Wang, Yi .
ADVANCES IN MATHEMATICS, 2013, 248 :335-377
[8]   The relative isoperimetric inequality in Cartan-Hadamard 3-manifolds -: To the memory of Jose!F. Escobar [J].
Choe, Jaigyoung ;
Ritore, Manuel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 605 :179-191
[9]   A SHARP 4 DIMENSIONAL ISOPERIMETRIC INEQUALITY [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (02) :187-192
[10]   On the Minimization of Total Mean Curvature [J].
Dalphin, J. ;
Henrot, A. ;
Masnou, S. ;
Takahashi, T. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) :2729-2750