共 50 条
The topology of equivariant Hilbert schemes
被引:0
|作者:
Bejleri, Dori
[1
]
Zaimi, Gjergji
[1
]
机构:
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词:
MCKAY CORRESPONDENCE;
QUIVER VARIETIES;
POINTS;
NUMBERS;
SMOOTH;
D O I:
10.1007/s40687-023-00393-z
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For G a finite group acting linearly on A(2), the equivariant Hilbert scheme Hilb'[A(2)/G] is a natural resolution of singularities of Sym'(A(2)/G). In this paper, we study the topology of Hilb'[A(2)/G] for abelian G and how it depends on the group G. We prove that the topological invariants of Hilb'[A(2)/G] are periodic or quasipolynomial in the order of the group Gas G varies over certain families of abelian subgroups of GL(2). This is done by using the Bialynicki-Birula decomposition to compute topological invariants in terms of the combinatorics of a certain set of partitions.
引用
收藏
页数:23
相关论文