The topology of equivariant Hilbert schemes

被引:0
|
作者
Bejleri, Dori [1 ]
Zaimi, Gjergji [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
MCKAY CORRESPONDENCE; QUIVER VARIETIES; POINTS; NUMBERS; SMOOTH;
D O I
10.1007/s40687-023-00393-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For G a finite group acting linearly on A(2), the equivariant Hilbert scheme Hilb'[A(2)/G] is a natural resolution of singularities of Sym'(A(2)/G). In this paper, we study the topology of Hilb'[A(2)/G] for abelian G and how it depends on the group G. We prove that the topological invariants of Hilb'[A(2)/G] are periodic or quasipolynomial in the order of the group Gas G varies over certain families of abelian subgroups of GL(2). This is done by using the Bialynicki-Birula decomposition to compute topological invariants in terms of the combinatorics of a certain set of partitions.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Topology of Z3-equivariant Hilbert schemes
    Castro, Deborah
    Ross, Dustin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01)
  • [2] Equivariant cohomology of incidence Hilbert schemes and infinite dimensional Lie algebras
    Li, Wei-Ping
    Qin, Zhenbo
    MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) : 519 - 544
  • [3] Nested Hilbert schemes on surfaces: Virtual fundamental class
    Gholampour, Amin
    Sheshmani, Artan
    Yau, Shing-Tung
    ADVANCES IN MATHEMATICS, 2020, 365
  • [4] HEISENBERG CATEGORIFICATION AND HILBERT SCHEMES
    Cautis, Sabin
    Licata, Anthony
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (13) : 2469 - 2547
  • [5] QUIVER VARIETIES AND HILBERT SCHEMES
    Kuznetsov, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 673 - 697
  • [6] Grobner cells of punctual Hilbert schemes in dimension two
    Cherednik, Ivan
    JOURNAL OF ALGEBRA, 2022, 597 : 205 - 240
  • [7] On the Equations Defining Some Hilbert Schemes
    Hauenstein, Jonathan D.
    Manivel, Laurent
    Szendroi, Balazs
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (02) : 487 - 500
  • [8] Rational Singularities of Nested Hilbert Schemes
    Ramkumar, Ritvik
    Sammartano, Alessio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (02) : 1061 - 1122
  • [9] Tautological integrals on curvilinear Hilbert schemes
    Berczi, Gergely
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 2897 - 2944
  • [10] TAUTOLOGICAL SHEAVES ON HILBERT SCHEMES OF POINTS
    Wang, Zhilan
    Zhou, Jian
    JOURNAL OF ALGEBRAIC GEOMETRY, 2014, 23 (04) : 669 - 692