Data-science-based reconstruction of 3-D membrane pore structure using a single 2-D micrograph

被引:12
作者
Chamani, Hooman [1 ]
Rabbani, Arash [2 ]
Russell, Kaitlyn P. [3 ]
Zydney, Andrew L. [3 ]
Gomez, Enrique D. [3 ,4 ]
Hattrick-Simpers, Jason [5 ]
Werber, Jay R. [1 ]
机构
[1] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, England
[3] Penn State Univ, Dept Chem Engn, State Coll, PA 16802 USA
[4] Penn State Univ, Dept Mat Sci & Engn, State Coll, PA 16802 USA
[5] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Data science; 3-D reconstruction; Membrane microstructure; Electron microscopy; Pore analysis; ELECTRON-MICROSCOPY; SIZE DISTRIBUTION; POROSITY; MICROSTRUCTURE; NETWORK; SEM;
D O I
10.1016/j.memsci.2023.121673
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Conventional 2-D scanning electron microscopy (SEM) is commonly used to rapidly and qualitatively evaluate membrane pore structure. Quantitative 2-D analyses of pore sizes can be extracted from SEM, but without in-formation about 3-D spatial arrangement and connectivity, which are crucial to the understanding of membrane pore structure. Meanwhile, experimental 3-D reconstruction via tomography is complex, expensive, and not easily accessible. Here, we employ data science tools to demonstrate a proof-of-principle reconstruction of the 3-D structure of a membrane using a single 2-D image pulled from a 3-D tomographic data set. The reconstructed and experimental 3-D structures were then directly compared, with important properties such as mean pore radius, mean throat radius, coordination number and tortuosity differing by less than 15%. The developed al-gorithm could dramatically improve the ability of the membrane community to characterize membranes, accelerating the design and synthesis of membranes with desired structural and transport properties.
引用
收藏
页数:9
相关论文
共 52 条
[1]   The impact of pore-throat shape evolution during dissolution on carbonate rock permeability: Pore network modeling and experiments [J].
Agrawal, Priyanka ;
Mascini, Arjen ;
Bultreys, Tom ;
Aslannejad, Hamed ;
Wolthers, Mariette ;
Cnudde, Veerle ;
Butler, Ian B. ;
Raoof, Amir .
ADVANCES IN WATER RESOURCES, 2021, 155
[2]  
Akasheva Z.K., 2021, Eng. J. Satbayev Univ, V143, P106, DOI [10.51301/vest.su.2021.i3.15, DOI 10.51301/VEST.SU.2021.I3.15]
[3]   A comparative study of image analysis and porometry techniques for characterization of porous membranes [J].
AlMarzooqi, Faisal A. ;
Bilad, M. R. ;
Mansoor, Bilal ;
Arafat, Hassan A. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (04) :2017-2032
[4]  
Bhargava N., 2015, INT J COMPUT APPL, V120, P20, DOI 10.5120/21409-4428
[5]  
Bradley Derek, 2007, Journal of Graphics Tools, V12, P13
[6]   FIB-SEM tomography reveals the nanoscale 3D morphology of virus removal filters [J].
Brickey, Kaitlyn P. ;
Zydney, Andrew L. ;
Gomez, Enrique D. .
JOURNAL OF MEMBRANE SCIENCE, 2021, 640 (640)
[7]   A reverse approach to evaluate membrane pore size distribution by the bubble gas transport method using fewer experimental data points [J].
Chamani, Hooman ;
Matsuura, Takeshi ;
Rana, Dipak ;
Lan, Christopher Q. .
DESALINATION, 2021, 518
[8]   Pore wetting in membrane distillation: A comprehensive review [J].
Chamani, Hooman ;
Woloszyn, Joanne ;
Matsuura, Takeshi ;
Rana, Dipak ;
Lan, Christopher Q. .
PROGRESS IN MATERIALS SCIENCE, 2021, 122 (122)
[9]  
Cosentino C., 2006, BIOMEMS BIOMEDICAL N, V1, P203, DOI [10.1007/978-0-387-25842-3_7, DOI 10.1007/978-0-387-25842-3_7]
[10]   Disparities in dermatology AI performance on a diverse, curated clinical image set [J].
Daneshjou, Roxana ;
Vodrahalli, Kailas ;
Novoa, Roberto A. ;
Jenkins, Melissa ;
Liang, Weixin ;
Rotemberg, Veronica ;
Ko, Justin ;
Swetter, Susan M. ;
Bailey, Elizabeth E. ;
Gevaert, Olivier ;
Mukherjee, Pritam ;
Phung, Michelle ;
Yekrang, Kiana ;
Fong, Bradley ;
Sahasrabudhe, Rachna ;
Allerup, Johan A. C. ;
Okata-Karigane, Utako ;
Zou, James ;
Chiou, Albert S. .
SCIENCE ADVANCES, 2022, 8 (32)