SpreadRank: A Novel Approach for Identifying Influential Spreaders in Complex Networks

被引:7
|
作者
Zhu, Xuejin [1 ]
Huang, Jie [1 ,2 ]
机构
[1] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
关键词
information diffusion; node centrality; influential spreaders; complex networks; SIR model; RUMOR PROPAGATION; IDENTIFICATION; CENTRALITY; MODEL; NODE; SET;
D O I
10.3390/e25040637
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Identifying influential spreaders in complex networks is critical for information spread and malware diffusion suppression. In this paper, we propose a novel influential spreader identification method, called SpreadRank, which considers the path reachability in information spreading and uses its quantitative index as a measure of node spread centrality to obtain the spread influence of a single node. To avoid the overlapping of the influence range of the node spread, this method establishes a dynamic influential node set selection mechanism based on the spread centrality value and the principle of minimizing the maximum connected branch after network segmentation, and it selects a group of nodes with the greatest overall spread influence. Experiments based on the SIR model demonstrate that, compared to other existing methods, the selected influential spreaders of SpreadRank can quickly diffuse or suppress information more effectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Identifying influential spreaders in complex networks based on limited spreading domain
    Ma, Qian
    Jiang, Shuhao
    Yang, Dandan
    Cheng, Guangtao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9303 - 9314
  • [22] Identifying influential spreaders based on indirect spreading in neighborhood
    Yu, Senbin
    Gao, Liang
    Xu, Lida
    Gao, Zi-You
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 418 - 425
  • [23] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
    Yan, Xiao-Li
    Cui, Ya-Peng
    Ni, Shun-Jiang
    CHINESE PHYSICS B, 2020, 29 (04)
  • [24] Identifying Influential Spreaders in Complex Networks Based on Weighted Mixed Degree Decomposition Method
    S. Raamakirtinan
    L. M. Jenila Livingston
    Wireless Personal Communications, 2022, 127 (3) : 2103 - 2119
  • [25] Identifying Influential Spreaders in Complex Networks by an Improved Spectralrank Algorithm
    Liu, Chunfang
    Wang, Pei
    Chen, Aimin
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 736 - 741
  • [26] Identifying Influential Spreaders Using Local Information
    Li, Zhe
    Huang, Xinyu
    MATHEMATICS, 2023, 11 (06)
  • [27] Identifying influential spreaders in interconnected networks
    Zhao, Dawei
    Li, Lixiang
    Li, Shudong
    Huo, Yujia
    Yang, Yixian
    PHYSICA SCRIPTA, 2014, 89 (01)
  • [28] Identifying and Ranking Influential Spreaders in Complex Networks by Localized Decreasing Gravity Model
    Xiang, Nan
    Tang, Xiao
    Liu, Huiling
    Ma, Xiaoxia
    COMPUTER JOURNAL, 2023, 67 (05) : 1727 - 1746
  • [29] A novel measure of identifying influential nodes in complex networks
    Lv, Zhiwei
    Zhao, Nan
    Xiong, Fei
    Chen, Nan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 488 - 497
  • [30] Identifying multiple influential spreaders in complex networks based on spectral graph theory
    Cui, Dong-Xu
    He, Jia-Lin
    Xiao, Zi-Fei
    Ren, Wei-Ping
    CHINESE PHYSICS B, 2023, 32 (09)