Polariton hybridization phenomena on near-field radiative heat transfer in periodic graphene/a-MoO3 cells

被引:16
作者
Zhang, Jihong [2 ]
Yang, Bing [3 ]
Shi, Kezhang [4 ]
Liu, Haotuo [1 ,5 ]
Wu, Xiaohu [1 ]
机构
[1] Shandong Inst Adv Technol, Jinan 250100, Shandong, Peoples R China
[2] Yantai Univ, Sch Electromech & Automot Engn, Yantai 264005, Shandong, Peoples R China
[3] Shandong Univ Technol, Ctr Adv Laser Mfg CALM, Sch Mech Engn, Zibo 255000, Peoples R China
[4] Zhejiang Univ, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res, Hangzhou 310058, Peoples R China
[5] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
alpha-MoO3; graphene; hyperbolic phonon polaritons; near-field radiative heat transfer; polariton hybridization phenomena; surface plasmon polaritons; THERMAL-RADIATION;
D O I
10.1515/nanoph-2022-0730
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Coupling of surface plasmon polaritons (SPPs) supported by graphene and hyperbolic phonon polaritons (HPPs) supported by hyperbolic materials (HMs) could effectively promote photon tunneling, and hence the radiative heat transfer. In this work, we investigate the polariton hybridization phenomena on near-field radiative heat transfer (NFRHT) in multilayer heterostructures, which consist of periodic graphene/a-MoO3 cells. Numerical results show that increasing the graphene/a-MoO3 cells can effectively enhance the NFRHT when the vacuum gap is less than 50 nm, but suppresses the enhanced performance with larger gap distance. This depends on the coupling of SPPs and HPPs in the periodic structure, which is analyzed by the energy transmission coefficients distributed in the wavevector space. The influence of the thickness of the a-MoO3 film and the chemical potential of graphene on the NFRHT is investigated. The findings in this work may guide designing high-performance near-field energy transfer and conversion devices based on coupling polaritons.
引用
收藏
页码:1833 / 1846
页数:14
相关论文
共 74 条
[41]   Effectiveness of Thin Films in Lieu of Hyperbolic Metamaterials in the Near Field [J].
Miller, Owen D. ;
Johnson, Steven G. ;
Rodriguez, Alejandro W. .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[42]   Thermal Rectification through Vacuum [J].
Otey, Clayton R. ;
Lau, Wah Tung ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[43]   Thermal rectification and spin-spin coupling of nonreciprocal localized and surface modes [J].
Ott, Annika ;
Biehs, Svend-Age .
PHYSICAL REVIEW B, 2020, 101 (15)
[44]   Radiative thermal diode driven by nonreciprocal surface waves [J].
Ott, Annika ;
Messina, Riccardo ;
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
APPLIED PHYSICS LETTERS, 2019, 114 (16)
[45]  
Poddubny A, 2013, NAT PHOTONICS, V7, P948, DOI [10.1038/NPHOTON.2013.243, 10.1038/nphoton.2013.243]
[46]   Hyperbolic metamaterials: fundamentals and applications [J].
Shekhar P. ;
Atkinson J. ;
Jacob Z. .
Nano Convergence, 1 (1)
[47]   Near-field heat transfer between graphene-Si grating heterostructures with multiple magnetic-polaritons coupling [J].
Shi, K. Z. ;
Bao, F. L. ;
He, N. ;
He, S. L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 134 :1119-1126
[48]   Near-Field Radiative Heat Transfer Modulation with an Ultrahigh Dynamic Range through Mode Mismatching [J].
Shi, Kezhang ;
Chen, Zhaoyang ;
Xing, Yuxin ;
Yang, Jianxin ;
Xu, Xinan ;
Evans, Julian S. ;
He, Sailing .
NANO LETTERS, 2022, 22 (19) :7753-7760
[49]   Optimized Colossal Near-Field Thermal Radiation Enabled by Manipulating Coupled Plasmon Polariton Geometry [J].
Shi, Kezhang ;
Chen, Zhaoyang ;
Xu, Xinan ;
Evans, Julian ;
He, Sailing .
ADVANCED MATERIALS, 2021, 33 (52)
[50]   Colossal Enhancement of Near-Field Thermal Radiation Across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling [J].
Shi, Kezhang ;
Sun, Yongcheng ;
Chen, Zhaoyang ;
He, Nan ;
Bao, Fanglin ;
Evans, Julian ;
He, Sailing .
NANO LETTERS, 2019, 19 (11) :8082-8088