Polariton hybridization phenomena on near-field radiative heat transfer in periodic graphene/a-MoO3 cells

被引:16
作者
Zhang, Jihong [2 ]
Yang, Bing [3 ]
Shi, Kezhang [4 ]
Liu, Haotuo [1 ,5 ]
Wu, Xiaohu [1 ]
机构
[1] Shandong Inst Adv Technol, Jinan 250100, Shandong, Peoples R China
[2] Yantai Univ, Sch Electromech & Automot Engn, Yantai 264005, Shandong, Peoples R China
[3] Shandong Univ Technol, Ctr Adv Laser Mfg CALM, Sch Mech Engn, Zibo 255000, Peoples R China
[4] Zhejiang Univ, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res, Hangzhou 310058, Peoples R China
[5] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
alpha-MoO3; graphene; hyperbolic phonon polaritons; near-field radiative heat transfer; polariton hybridization phenomena; surface plasmon polaritons; THERMAL-RADIATION;
D O I
10.1515/nanoph-2022-0730
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Coupling of surface plasmon polaritons (SPPs) supported by graphene and hyperbolic phonon polaritons (HPPs) supported by hyperbolic materials (HMs) could effectively promote photon tunneling, and hence the radiative heat transfer. In this work, we investigate the polariton hybridization phenomena on near-field radiative heat transfer (NFRHT) in multilayer heterostructures, which consist of periodic graphene/a-MoO3 cells. Numerical results show that increasing the graphene/a-MoO3 cells can effectively enhance the NFRHT when the vacuum gap is less than 50 nm, but suppresses the enhanced performance with larger gap distance. This depends on the coupling of SPPs and HPPs in the periodic structure, which is analyzed by the energy transmission coefficients distributed in the wavevector space. The influence of the thickness of the a-MoO3 film and the chemical potential of graphene on the NFRHT is investigated. The findings in this work may guide designing high-performance near-field energy transfer and conversion devices based on coupling polaritons.
引用
收藏
页码:1833 / 1846
页数:14
相关论文
共 74 条
[1]   Enhancement of Coulomb drag in double-layer graphene structures by plasmons and dielectric background inhomogeneity [J].
Badalyan, S. M. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2012, 86 (12)
[2]   Gate tunable light-matter interaction in natural biaxial hyperbolic van der Waals heterostructures [J].
Bapat, Aneesh ;
Dixit, Saurabh ;
Gupta, Yashika ;
Low, Tony ;
Kumar, Anshuman .
NANOPHOTONICS, 2022, 11 (10) :2329-2340
[3]   Near-Field Thermal Transistor [J].
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[4]   Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials [J].
Biehs, S. -A. ;
Tschikin, M. ;
Messina, R. ;
Ben-Abdallah, P. .
APPLIED PHYSICS LETTERS, 2013, 102 (13)
[5]   Nanoscale heat flux between nanoporous materials [J].
Biehs, S. -A. ;
Ben-Abdallah, P. ;
Rosa, F. S. S. ;
Joulain, K. ;
Greffet, J. -J. .
OPTICS EXPRESS, 2011, 19 (19) :A1088-A1103
[6]   Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer [J].
Chen, Kaifeng ;
Santhanam, Parthiban ;
Sandhu, Sunil ;
Zhu, Linxiao ;
Fan, Shanhui .
PHYSICAL REVIEW B, 2015, 91 (13)
[7]   Nonreciprocal thermal radiation of nanoparticles via spin-directional coupling with reciprocal surface modes [J].
Dong, Jian ;
Zhang, Wenjie ;
Liu, Linhua .
APPLIED PHYSICS LETTERS, 2021, 119 (02)
[8]   Long-distance near-field energy transport via propagating surface waves [J].
Dong, Jian ;
Zhao, Junming ;
Liu, Linhua .
PHYSICAL REVIEW B, 2018, 97 (07)
[9]   Fundamental Limits of the Dew-Harvesting Technology [J].
Dong, Minghao ;
Zhang, Zheng ;
Shi, Yu ;
Zhao, Xiaodong ;
Fan, Shanhui ;
Chen, Zhen .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2020, 24 (01) :43-52
[10]   Nanogap near-field thermophotovoltaics [J].
Fiorino, Anthony ;
Zhu, Linxiao ;
Thompson, Dakotah ;
Mittapally, Rohith ;
Reddy, Pramod ;
Meyhofer, Edgar .
NATURE NANOTECHNOLOGY, 2018, 13 (09) :806-+