On bivariate Kantorovich exponential sampling series

被引:0
|
作者
Kumar, Prashant [1 ]
Sathish Kumar, A. [2 ]
Bajpeyi, Shivam [3 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, India
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Indian Inst Technol Delhi, Dept Math, New Delhi, India
关键词
GBS operators; Kantorovich type exponential sampling series; Mellin B-continuous; Mellin transform; mixed modulus of smoothness??????; APPROXIMATION; OPERATORS;
D O I
10.1002/mma.9202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze the approximation properties of bivariate generalization for the family of Kantorovich type exponential sampling series. We derive the basic convergence result and Voronovskaya type theorem for the proposed sampling series. Using logarithmic modulus of smoothness, we establish the quantitative estimate of order of convergence for the Kantorovich type exponential sampling series. Furthermore, we study the convergence results for the generalized Boolean sum (GBS) operator associated with bivariate Kantorovich exponential sampling series. At the end, we provide a few examples of kernels to which the presented theory can be applied along with the graphical representation and error estimates.
引用
收藏
页码:12645 / 12659
页数:15
相关论文
共 50 条
  • [41] Multidimensional sampling-Kantorovich operators in BV-spaces
    Angeloni, Laura
    Vinti, Gianluca
    OPEN MATHEMATICS, 2023, 21 (01):
  • [42] The approximation of bivariate Chlodowsky-Szász-Kantorovich-Charlier-type operators
    Purshottam Narain Agrawal
    Behar Baxhaku
    Ruchi Chauhan
    Journal of Inequalities and Applications, 2017
  • [43] Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
    Aslan, Resat
    Izgi, Aydin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 467 - 484
  • [44] Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (12) : 1276 - 1299
  • [45] Statistical Convergence of Sza?sz-Mirakjan-Kantorovich-Type Operators and their Bivariate Extension
    Yadav, Rishikesh
    Mishra, Vishnu Narayan
    Meher, Ramakanta
    Mursaleen, M.
    FILOMAT, 2022, 36 (17) : 5895 - 5912
  • [46] Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces
    Angeloni, Laura
    Cetin, Nursel
    Costarelli, Danilo
    Sambucini, Anna rita
    Vinti, Gianluca
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (02): : 229 - 241
  • [47] Applications of sampling Kantorovich operators to thermographic images for seismic engineering
    Cluni, Federico
    Costarelli, Danilo
    Minotti, Anna Maria
    Vinti, Gianluca
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (04) : 602 - 617
  • [48] Quantitative estimates for perturbed sampling Kantorovich operators in Orlicz spaces
    Costarelli, Danilo
    De Angelis, Eleonora
    Vinti, Gianluca
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [49] Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces
    Cetin, Nursel
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 12 - 25
  • [50] Estimations for the convex modular of the aliasing error of nonlinear sampling Kantorovich operators
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2025, 30 (02): : 270 - 290