On bivariate Kantorovich exponential sampling series

被引:0
|
作者
Kumar, Prashant [1 ]
Sathish Kumar, A. [2 ]
Bajpeyi, Shivam [3 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, India
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Indian Inst Technol Delhi, Dept Math, New Delhi, India
关键词
GBS operators; Kantorovich type exponential sampling series; Mellin B-continuous; Mellin transform; mixed modulus of smoothness??????; APPROXIMATION; OPERATORS;
D O I
10.1002/mma.9202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze the approximation properties of bivariate generalization for the family of Kantorovich type exponential sampling series. We derive the basic convergence result and Voronovskaya type theorem for the proposed sampling series. Using logarithmic modulus of smoothness, we establish the quantitative estimate of order of convergence for the Kantorovich type exponential sampling series. Furthermore, we study the convergence results for the generalized Boolean sum (GBS) operator associated with bivariate Kantorovich exponential sampling series. At the end, we provide a few examples of kernels to which the presented theory can be applied along with the graphical representation and error estimates.
引用
收藏
页码:12645 / 12659
页数:15
相关论文
共 50 条
  • [31] Quantitative Estimates for Nonlinear Sampling Kantorovich Operators
    Cetin, Nursel
    Costarelli, Danilo
    Vinti, Gianluca
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [32] Extension of Saturation Theorems for the Sampling Kantorovich Operators
    Bartoccini, Benedetta
    Costarelli, Danilo
    Vinti, Gianluca
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1161 - 1175
  • [33] The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    Chauhan, Ruchi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [34] Bivariate Bernstein Chlodovsky Operators Preserving Exponential Functions and Their Convergence Properties
    Acar, Tuncer
    Bodur, Murat
    Isikli, Esma
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (01) : 16 - 37
  • [35] Sampling by Difference as a Method of Applying the Sampling Kantorovich Model in Digital Image Processing
    Seracini, Marco
    Vinti, Gianluca
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [36] Convergence of Perturbed Sampling Kantorovich Operators in Modular Spaces
    Costarelli, Danilo
    De Angelis, Eleonora
    Vinti, Gianluca
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [37] Convergence of sampling Kantorovich operators in modular spaces with applications
    Costarelli, Danilo
    Vinti, Gianluca
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 1115 - 1136
  • [38] Bivariate Bernstein-Kantorovich Operators with a Summability Method and Related GBS Operators
    Ansari, Khursheed J.
    Karakilic, Sedef
    Ozger, Faruk
    FILOMAT, 2022, 36 (19) : 6751 - 6765
  • [39] The Mellin-Parseval formula and its interconnections with the exponential sampling theorem of optical physics
    Bardaro, Carlo
    Butzer, Paul L.
    Mantellini, Ilaria
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (01) : 17 - 29
  • [40] On approximation by some Bernstein-Kantorovich exponential-type polynomials
    Aral, Ali
    Otrocol, Diana
    Rasa, Ioan
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) : 236 - 254