On bivariate Kantorovich exponential sampling series

被引:0
|
作者
Kumar, Prashant [1 ]
Sathish Kumar, A. [2 ]
Bajpeyi, Shivam [3 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, India
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Indian Inst Technol Delhi, Dept Math, New Delhi, India
关键词
GBS operators; Kantorovich type exponential sampling series; Mellin B-continuous; Mellin transform; mixed modulus of smoothness??????; APPROXIMATION; OPERATORS;
D O I
10.1002/mma.9202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze the approximation properties of bivariate generalization for the family of Kantorovich type exponential sampling series. We derive the basic convergence result and Voronovskaya type theorem for the proposed sampling series. Using logarithmic modulus of smoothness, we establish the quantitative estimate of order of convergence for the Kantorovich type exponential sampling series. Furthermore, we study the convergence results for the generalized Boolean sum (GBS) operator associated with bivariate Kantorovich exponential sampling series. At the end, we provide a few examples of kernels to which the presented theory can be applied along with the graphical representation and error estimates.
引用
收藏
页码:12645 / 12659
页数:15
相关论文
共 50 条
  • [11] On Approximation by Kantorovich Exponential Sampling Operators
    Bajpeyi, Shivam
    Kumar, A. Sathish
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1096 - 1113
  • [12] Exponential Sampling Type Kantorovich Max-Product Neural Network Operators
    Bajpeyi, Shivam
    Baxhaku, Behar
    Agrawal, Purshottam Narain
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, : 631 - 650
  • [13] Asymptotic formulae for multivariate Kantorovich type generalized sampling series
    Bardaro, Carlo
    Mantellini, Ilaria
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (07) : 1247 - 1258
  • [14] Approximation by Generalized Kantorovich Sampling Type Series
    Kumar, Angamuthu Sathish
    Devaraj, Ponnaian
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (03): : 465 - 480
  • [15] AN INVERSE RESULT OF APPROXIMATION BY SAMPLING KANTOROVICH SERIES
    Costarelli, Danilo
    Vinti, Gianluca
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 265 - 280
  • [16] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [17] Approximation by sampling Kantorovich series in weighted spaces of functions
    Acar, Tuncer
    Alagoz, Osman
    Aral, Ali
    Costarelli, Danilo
    Turgay, Metin
    Vinti, Gianluca
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2663 - 2676
  • [18] Inverse results of approximation and the saturation order for the sampling Kantorovich series
    Costarelli, Danilo
    Vinti, Gianluca
    JOURNAL OF APPROXIMATION THEORY, 2019, 242 : 64 - 82
  • [19] ABOUT THE BIVARIATE OPERATORS OF KANTOROVICH TYPE
    Pop, O. T.
    Farcas, M. D.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2009, 78 (01): : 43 - 52
  • [20] Riemann-Liouville fractional exponential sampling type neural network Kantorovich operators
    Berisha, Artan
    Baxhaku, Fesal
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 151