Backward Importance Sampling for Online Estimation of State Space Models

被引:1
|
作者
Martin, Alice [1 ,2 ]
Etienne, Marie-Pierre [3 ]
Gloaguen, Pierre [4 ]
Le Corff, Sylvain [5 ]
Olsson, Jimmy [6 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Ecole Polytech, Palaiseau, France
[2] Inst Polytech Paris, Telecom SudParis, Samovar, Palaiseau, France
[3] Agrocampus Ouest, CNRS, IRMAR UMR 6625, Rennes, France
[4] Univ Paris Saclay, AgroParisTech, INRAE, UMR MIA Paris Saclay, F-91120 Palaiseau, France
[5] Sorbonne Univ, LPSM, UMR CNRS 8001, Paris, France
[6] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Hidden Markov models; Online smoothing; Sequential Monte Carlo; HIDDEN MARKOV-MODELS; MAXIMUM-LIKELIHOOD; PARTICLE; APPROXIMATION; CONVERGENCE; SIMULATION; INFERENCE; FILTER;
D O I
10.1080/10618600.2023.2174125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a new Sequential Monte Carlo algorithm to perform online estimation in the context of state space models when either the transition density of the latent state or the conditional likelihood of an observation given a state is intractable. In this setting, obtaining low variance estimators of expectations under the posterior distributions of the unobserved states given the observations is a challenging task. Following recent theoretical results for pseudo-marginal sequential Monte Carlo smoothers, a pseudo-marginal backward importance sampling step is introduced to estimate such expectations. This new step allows to reduce very significantly the computational time of the existing numerical solutions based on an acceptance-rejection procedure for similar performance, and to broaden the class of eligible models for such methods. For instance, in the context of multivariate stochastic differential equations, the proposed algorithm makes use of unbiased estimates of the unknown transition densities under much weaker assumptions than most standard alternatives. The performance of this estimator is assessed for high-dimensional discrete-time latent data models, for recursive maximum likelihood estimation in the context of Partially Observed Diffusion process (POD), and in the case of a bidimensional partially observed stochastic Lotka-Volterra model. for this article are available online.
引用
收藏
页码:1447 / 1460
页数:14
相关论文
共 50 条
  • [21] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [22] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [23] Stochastic Gradient MCMC for State Space Models
    Aicher, Christopher
    Ma, Yi-An
    Foti, Nicholas J.
    Fox, Emily B.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (03): : 555 - 587
  • [24] Online estimation of hidden Markov models
    Stiller, JC
    Radons, G
    IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (08) : 213 - 215
  • [25] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [26] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2018, 24 (4A) : 3039 - 3086
  • [27] Optimised importance sampling quantile estimation
    Goffinet, B
    Wallach, D
    BIOMETRIKA, 1996, 83 (04) : 791 - 800
  • [28] QUANTILE ESTIMATION WITH ADAPTIVE IMPORTANCE SAMPLING
    Egloff, Daniel
    Leippold, Markus
    ANNALS OF STATISTICS, 2010, 38 (02) : 1244 - 1278
  • [29] Marginalized approximate filtering of state-space models
    Dedecius, K.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 1 - 12
  • [30] Identifiability and consistent estimation of nonparametric translation hidden markov models with general state space
    Gassiat, Élisabeth
    Le Corff, Sylvain
    Lehéricy, Luc
    1600, Microtome Publishing (21):