Backward Importance Sampling for Online Estimation of State Space Models

被引:1
|
作者
Martin, Alice [1 ,2 ]
Etienne, Marie-Pierre [3 ]
Gloaguen, Pierre [4 ]
Le Corff, Sylvain [5 ]
Olsson, Jimmy [6 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Ecole Polytech, Palaiseau, France
[2] Inst Polytech Paris, Telecom SudParis, Samovar, Palaiseau, France
[3] Agrocampus Ouest, CNRS, IRMAR UMR 6625, Rennes, France
[4] Univ Paris Saclay, AgroParisTech, INRAE, UMR MIA Paris Saclay, F-91120 Palaiseau, France
[5] Sorbonne Univ, LPSM, UMR CNRS 8001, Paris, France
[6] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Hidden Markov models; Online smoothing; Sequential Monte Carlo; HIDDEN MARKOV-MODELS; MAXIMUM-LIKELIHOOD; PARTICLE; APPROXIMATION; CONVERGENCE; SIMULATION; INFERENCE; FILTER;
D O I
10.1080/10618600.2023.2174125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a new Sequential Monte Carlo algorithm to perform online estimation in the context of state space models when either the transition density of the latent state or the conditional likelihood of an observation given a state is intractable. In this setting, obtaining low variance estimators of expectations under the posterior distributions of the unobserved states given the observations is a challenging task. Following recent theoretical results for pseudo-marginal sequential Monte Carlo smoothers, a pseudo-marginal backward importance sampling step is introduced to estimate such expectations. This new step allows to reduce very significantly the computational time of the existing numerical solutions based on an acceptance-rejection procedure for similar performance, and to broaden the class of eligible models for such methods. For instance, in the context of multivariate stochastic differential equations, the proposed algorithm makes use of unbiased estimates of the unknown transition densities under much weaker assumptions than most standard alternatives. The performance of this estimator is assessed for high-dimensional discrete-time latent data models, for recursive maximum likelihood estimation in the context of Partially Observed Diffusion process (POD), and in the case of a bidimensional partially observed stochastic Lotka-Volterra model. for this article are available online.
引用
收藏
页码:1447 / 1460
页数:14
相关论文
共 50 条
  • [1] On Particle Methods for Parameter Estimation in State-Space Models
    Kantas, Nikolas
    Doucet, Arnaud
    Singh, Sumeetpal S.
    Maciejowski, Jan
    Chopin, Nicolas
    STATISTICAL SCIENCE, 2015, 30 (03) : 328 - 351
  • [2] The Gibbs sampler with particle efficient importance sampling for state-space models*
    Grothe, Oliver
    Kleppe, Tore Selland
    Liesenfeld, Roman
    ECONOMETRIC REVIEWS, 2019, 38 (10) : 1152 - 1175
  • [3] Adaptive methods for sequential importance sampling with application to state space models
    Julien Cornebise
    Éric Moulines
    Jimmy Olsson
    Statistics and Computing, 2008, 18 : 461 - 480
  • [4] Adaptive methods for sequential importance sampling with application to state space models
    Cornebise, Julien
    Moulines, Eric
    Olsson, Jimmy
    STATISTICS AND COMPUTING, 2008, 18 (04) : 461 - 480
  • [5] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Olsson, Jimmy
    Westerborn Alenlov, Johan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 545 - 576
  • [6] Variance estimation for sequential Monte Carlo algorithms: A backward sampling approach
    El Idrissi, Yazid Janati
    Le Corff, Sylvain
    Petetin, Yohan
    BERNOULLI, 2024, 30 (02) : 911 - 935
  • [7] Particle-kernel estimation of the filter density in state-space models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2014, 20 (04) : 1879 - 1929
  • [8] Nonparametric quantile estimation using surrogate models and importance sampling
    Kohler, Michael
    Tent, Reinhard
    METRIKA, 2020, 83 (02) : 141 - 169
  • [9] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [10] Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space
    Gassiat, Elisabeth
    Le Corff, Sylvain
    Lehericy, Luc
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21