A Novel Deep Reinforcement Learning Approach to Traffic Signal Control with Connected Vehicles

被引:9
|
作者
Shi, Yang [1 ]
Wang, Zhenbo [1 ]
LaClair, Tim J. [2 ]
Wang, Chieh [2 ]
Shao, Yunli [2 ]
Yuan, Jinghui [2 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Bldg & Transportat Sci Div, Oak Ridge, TN 37831 USA
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 04期
关键词
traffic signal control; deep reinforcement learning; autoencoder neural network; representation learning; NETWORK; LEVEL;
D O I
10.3390/app13042750
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The advent of connected vehicle (CV) technology offers new possibilities for a revolution in future transportation systems. With the availability of real-time traffic data from CVs, it is possible to more effectively optimize traffic signals to reduce congestion, increase fuel efficiency, and enhance road safety. The success of CV-based signal control depends on an accurate and computationally efficient model that accounts for the stochastic and nonlinear nature of the traffic flow. Without the necessity of prior knowledge of the traffic system's model architecture, reinforcement learning (RL) is a promising tool to acquire the control policy through observing the transition of the traffic states. In this paper, we propose a novel data-driven traffic signal control method that leverages the latest in deep learning and reinforcement learning techniques. By incorporating a compressed representation of the traffic states, the proposed method overcomes the limitations of the existing methods in defining the action space to include more practical and flexible signal phases. The simulation results demonstrate the convergence and robust performance of the proposed method against several existing benchmark methods in terms of average vehicle speeds, queue length, wait time, and traffic density.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A deep reinforcement learning-based cooperative approach formulti-intersection traffic signal control
    Haddad, Tarek Amine
    Hedjazi, Djalal
    Aouag, Sofiane
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [42] Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections
    Zhang, Gongquan
    Chang, Fangrong
    Jin, Jieling
    Yang, Fan
    Huang, Helai
    ACCIDENT ANALYSIS AND PREVENTION, 2024, 199
  • [43] Optimization of Traffic Signal Cooperative Control with Sparse Deep Reinforcement Learning Based on Knowledge Sharing
    Fan, Lingling
    Yang, Yusong
    Ji, Honghai
    Xiong, Shuangshuang
    ELECTRONICS, 2025, 14 (01):
  • [44] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [45] Traffic Signal Control System Using Deep Reinforcement Learning With Emphasis on Reinforcing Successful Experiences
    Kodama, Naoki
    Harada, Taku
    Miyazaki, Kazuteru
    IEEE ACCESS, 2022, 10 : 128943 - 128950
  • [46] FP-WDDQN: An improved deep reinforcement learning algorithm for adaptive traffic signal control
    Zhang, Xiao
    Xu, Xiaolong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 44 - 51
  • [47] Traffic Signal Control Optimization Based on Deep Reinforcement Learning with Attention Mechanisms
    Ni, Wenlong
    Wang, Peng
    Li, Zehong
    Li, Chuanzhuang
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 147 - 158
  • [48] Minimize Pressure Difference Traffic Signal Control Based on Deep Reinforcement Learning
    Yu, Pengcheng
    Luo, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5493 - 5498
  • [49] Adaptive urban traffic signal control based on enhanced deep reinforcement learning
    Cai, Changjian
    Wei, Min
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Traffic Signal Control with Deep Reinforcement Learning and Self-attention Mechanism
    Zhang X.
    Nie S.
    Li Z.
    Zhang H.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (02): : 96 - 104