A Novel Deep Reinforcement Learning Approach to Traffic Signal Control with Connected Vehicles

被引:9
|
作者
Shi, Yang [1 ]
Wang, Zhenbo [1 ]
LaClair, Tim J. [2 ]
Wang, Chieh [2 ]
Shao, Yunli [2 ]
Yuan, Jinghui [2 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Bldg & Transportat Sci Div, Oak Ridge, TN 37831 USA
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 04期
关键词
traffic signal control; deep reinforcement learning; autoencoder neural network; representation learning; NETWORK; LEVEL;
D O I
10.3390/app13042750
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The advent of connected vehicle (CV) technology offers new possibilities for a revolution in future transportation systems. With the availability of real-time traffic data from CVs, it is possible to more effectively optimize traffic signals to reduce congestion, increase fuel efficiency, and enhance road safety. The success of CV-based signal control depends on an accurate and computationally efficient model that accounts for the stochastic and nonlinear nature of the traffic flow. Without the necessity of prior knowledge of the traffic system's model architecture, reinforcement learning (RL) is a promising tool to acquire the control policy through observing the transition of the traffic states. In this paper, we propose a novel data-driven traffic signal control method that leverages the latest in deep learning and reinforcement learning techniques. By incorporating a compressed representation of the traffic states, the proposed method overcomes the limitations of the existing methods in defining the action space to include more practical and flexible signal phases. The simulation results demonstrate the convergence and robust performance of the proposed method against several existing benchmark methods in terms of average vehicle speeds, queue length, wait time, and traffic density.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Traffic Signal Control Under Mixed Traffic With Connected and Automated Vehicles: A Transfer-Based Deep Reinforcement Learning Approach
    Song, Li
    Fan, Wei
    IEEE ACCESS, 2021, 9 : 145228 - 145237
  • [2] A Deep Reinforcement Learning Approach to Traffic Signal Control With Temporal Traffic Pattern Mining
    Ma, Dongfang
    Zhou, Bin
    Song, Xiang
    Dai, Hanwen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11789 - 11800
  • [3] CVLight: Decentralized learning for adaptive traffic signal control with connected vehicles
    Mo, Zhaobin
    Li, Wangzhi
    Fu, Yongjie
    Ruan, Kangrui
    Di, Xuan
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 141
  • [4] A survey on deep reinforcement learning approaches for traffic signal control
    Zhao, Haiyan
    Dong, Chengcheng
    Cao, Jian
    Chen, Qingkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [5] Deep Reinforcement Learning for Traffic Signal Control: A Review
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md.
    Wu, Celimuge
    Low, Yeh-Ching
    IEEE ACCESS, 2020, 8 : 208016 - 208044
  • [6] A Survey on Deep Reinforcement Learning for Traffic Signal Control
    Miao, Wei
    Li, Long
    Wang, Zhiwen
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1092 - 1097
  • [7] Traffic signal control method based on deep reinforcement learning
    Liu Z.-M.
    Ye B.-L.
    Zhu Y.-D.
    Yao Q.
    Wu W.-M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1249 - 1256
  • [8] Longitudinal control of connected and automated vehicles among signalized intersections in mixed traffic flow with deep reinforcement learning approach
    Liu, Chunyu
    Sheng, Zihao
    Chen, Sikai
    Shi, Haotian
    Ran, Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 629
  • [9] Robust Deep Reinforcement Learning for Traffic Signal Control
    Kai Liang Tan
    Anuj Sharma
    Soumik Sarkar
    Journal of Big Data Analytics in Transportation, 2020, 2 (3): : 263 - 274
  • [10] Decentralized signal control for multi-modal traffic network: A deep reinforcement learning approach
    Yu, Jiajie
    Laharotte, Pierre-Antoine
    Han, Yu
    Leclercq, Ludovic
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 154