Here, we propose a novel method for texture recognition that employs fuzzy modeling over deep learning features. Specifically, the well-established pipeline of deep filter banks for texture description is followed, but using fuzzy equivalence measures for aggregating the deep features. This solution is more robust than a simple "all-or-nothing"assignment used on bag-of-visual-words, and it is less expensive than complex statistical representations such as Fisher vectors. Additionally, it avoids dependence on strong assumptions about specific distributions. The proposed method is evaluated on texture classification tasks, including both benchmark databases and a practical task in botany. In both cases, the results were competitive with state-of-the-art methods and suggest the potential of this combination for texture analysis in general.
机构:
Univ Autonoma Estado Hidalgo, Escuela Super Tizayuca, Tizayuca 43800, Hidalgo, MexicoUniv Autonoma Estado Hidalgo, Escuela Super Tizayuca, Tizayuca 43800, Hidalgo, Mexico
Garcia-Lamont, Farid
Cervantes, Jair
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Estado Mexico, Fraccionamiento Tecojote 56259, Texcoco Estado, MexicoUniv Autonoma Estado Hidalgo, Escuela Super Tizayuca, Tizayuca 43800, Hidalgo, Mexico
Cervantes, Jair
Lopez, Asdrubal
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Invest & Estudios Avanzados IPN, Dept Comp, Mexico City 07360, DF, MexicoUniv Autonoma Estado Hidalgo, Escuela Super Tizayuca, Tizayuca 43800, Hidalgo, Mexico
机构:
Univ Estadual Campinas, Inst Math Stat & Sci Comp, BR-13083859 Campinas, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, BR-13083859 Campinas, Brazil
Florindo, Joao
Metze, Konradin
论文数: 0引用数: 0
h-index: 0
机构:
State Univ Campinas UNICAMP, Fac Med Sci, BR-13083894 Campinas, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, BR-13083859 Campinas, Brazil