Correlation-Based Anomaly Detection in Industrial Control Systems

被引:5
|
作者
Jadidi, Zahra [1 ,2 ]
Pal, Shantanu [3 ]
Hussain, Mukhtar [1 ]
Thanh, Kien Nguyen [4 ]
机构
[1] Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld 4000, Australia
[2] Griffith Univ, Sch Informat & Commun Technol, Gold Coast, Qld 4222, Australia
[3] Deakin Univ, Sch Informat Technol, Melbourne, Vic 3125, Australia
[4] Queensland Univ Technol, Sch Elect Engn & Robot, Brisbane, Qld 4000, Australia
关键词
industrial control systems; cyber attacks; anomaly detection; recurrent neural networks; correlation analysis;
D O I
10.3390/s23031561
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Industrial Control Systems (ICSs) were initially designed to be operated in an isolated network. However, recently, ICSs have been increasingly connected to the Internet to expand their capability, such as remote management. This interconnectivity of ICSs exposes them to cyber-attacks. At the same time, cyber-attacks in ICS networks are different compared to traditional Information Technology (IT) networks. Cyber attacks on ICSs usually involve a sequence of actions and a multitude of devices. However, current anomaly detection systems only focus on local analysis, which misses the correlation between devices and the progress of attacks over time. As a consequence, they lack an effective way to detect attacks at an entire network scale and predict possible future actions of an attack, which is of significant interest to security analysts to identify the weaknesses of their network and prevent similar attacks in the future. To address these two key issues, this paper presents a system-wide anomaly detection solution using recurrent neural networks combined with correlation analysis techniques. The proposed solution has a two-layer analysis. The first layer targets attack detection, and the second layer analyses the detected attack to predict the next possible attack actions. The main contribution of this paper is the proof of the concept implementation using two real-world ICS datasets, SWaT and Power System Attack. Moreover, we show that the proposed solution effectively detects anomalies and attacks on the scale of the entire ICS network.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] MADICS: A Methodology for Anomaly Detection in Industrial Control Systems
    Perales Gomez, Angel Luis
    Fernandez Maimo, Lorenzo
    Huertas Celdran, Alberto
    Garcia Clemente, Felix J.
    SYMMETRY-BASEL, 2020, 12 (10):
  • [22] etecting a Weakened Encryption Algorithm in Microcontrollers Using Correlation-Based Anomaly Detection
    Wylie, Justin
    Stone, Samuel
    Mullins, Barry
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2016), 2016, : 335 - 343
  • [23] Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems
    Gillen, Robert E.
    Carter, Jason M.
    Craig, Christopher
    Johnson, Jordan A.
    Scott, Stephen L.
    2020 21ST IEEE INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (IEEE WOWMOM 2020), 2020, : 360 - 366
  • [24] Self-similarity based network anomaly detection for industrial control systems
    Martin, Bryan
    Bollmann, Chad A.
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [25] An improved autoencoder-based approach for anomaly detection in industrial control systems
    Aslam, Muhammad Muzamil
    Tufail, Ali
    De Silva, Liyanage Chandratilak
    Haji Mohd Apong, Rosyzie Anna Awg
    Namoun, Abdallah
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [26] Federated Learning-Based Explainable Anomaly Detection for Industrial Control Systems
    Huong, Truong Thu
    Bac, Ta Phuong
    Ha, Kieu Ngan
    Hoang, Nguyen Viet
    Hoang, Nguyen Xuan
    Hung, Nguyen Tai
    Tran, Kim Phuc
    IEEE ACCESS, 2022, 10 : 53854 - 53872
  • [27] Dynamic Data Abstraction-Based Anomaly Detection for Industrial Control Systems
    Cho, Jake
    Gong, Seonghyeon
    ELECTRONICS, 2024, 13 (01)
  • [28] A real-time network based anomaly detection in industrial control systems
    Zare, Faeze
    Mahmoudi-Nasr, Payam
    Yousefpour, Rohollah
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2024, 45
  • [29] WaXAI: Explainable Anomaly Detection in Industrial Control Systems and Water Systems
    Mathuros, Kornkamon
    Venugopalan, Sarad
    Adepu, Sridhar
    PROCEEDINGS OF THE 10TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, ACM CPSS 2024, 2024, : 3 - 15
  • [30] Anomaly Detection on Industrial Time Series Based on Correlation Analysis
    Ding X.-O.
    Yu S.-J.
    Wang M.-X.
    Wang H.-Z.
    Gao H.
    Yang D.-H.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (03): : 726 - 747